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ABSTRACT

We address the transmission of bivariate Gaussian sources us-
ing analog Joint Source Channel Coding (JSCC). The analog
mappings are specifically designed to exploit the correlation
between the source symbols. A parametric mapping based
on sinusoidal functions is proposed and its performance is
compared to that of the optimal non parametric mappings and
other applicable analog JSCC mappings, and also to the the-
oretical bound. The obtained results show that the perfor-
mance of the parametric mapping closely approaches the op-
timal performance, and it is very similar to that of the non
parametric one.

Index Terms— Analog Joint Source Channel Coding,
Parametric Mappings, Correlated Souces.

1. INTRODUCTION

The transmission of independent sources is a common as-
sumption in signal processing for wireless communications.
Nevertheless, this premise is not adequate for modeling multi-
tude of practical situations where the information to be trans-
mitted is correlated in some way. In this work, we address
the transmission of correlated information using analog Joint
Source Channel Coding (JSCC).

Analog JSCC techniques are based on the joint optimiza-
tion of the source and channel encoding. This strategy has
been shown to approach the optimal cost-distortion tradeoff,
specially for the compression of independent analog sources
in a single-user scenario [1, 2, 3]. In this case, the discrete-
time continuous-amplitude symbols are directly encoded us-
ing analog mappings based on parametric space-filling curves
[4, 5]. Analog JSCC presents some advantages with respect
to digital systems based on the source-channel separation [6].
The complexity and delay are drastically reduced because
the processing is at symbol level. In addition, analog JSCC
schemes do not saturate at high SNR region (quantization ef-
fect) and present graceful degradation for imperfect channel
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information. Moreover, they can be adapted in time-varying
channels without a complete redesign of the system.

Previous works have addressed the design of analog JSCC
mappings for correlated sources, specially for MAC commu-
nications [7, 8, 9]. For AWGN channels, non parametric en-
coders based on Power Constrained Channel Optimized Vec-
tor Quantizers have been proposed in [10]. In general, non
parametric analog JSCC mappings for different scenarion can
be obtained by following the iterative procedure proposed in
[8, 11] or using deterministic annealing [12]. The main ad-
vantage of these methods is that they can find near optimal
solutions given a prior distribution of the source symbols, but
they can also fall in local minimum and are rather complex.

Approximations for these general encoders by paramet-
ric curves largely simplifies the design of the analog JSCC
systems because any point of the source space can directly
be mapped to the corresponding channel symbols (and vicev-
ersa) by using the equation defining the parametric curve. In
this work, based on previous results for non-parametric en-
coding of correlated Gaussian sources, a parametric version is
proposed and is shown to achieve near optimal performance
for the Signal-to-Noise Rate (SNR) levels of interest.

2. SYSTEM MODEL

Let us consider the transmission of bivariate Gaussian source
symbols s = [s1, s2]T with zero mean and covariance matrix

Cs = E
[
ssH

]
=

[
σ2
s ρσ2

s

ρσ2
s σ2

s

]
where ρ is the correlation factor. The probability density func-
tion (pdf) of s is therefore given by

ps(s) =
1√

(2π)2 det{Cs}
exp

(
−1

2
sTC−1s s

)
. (1)

We explore the utilization of non linear analog mappings
to directly transform two correlated source symbols s =
[s1, s2]T into one channel symbol x, that is transmitted over a
noisy channel. Analog mappings are mathematically defined
as a function g : R2 → R such that x = g(s). The analog en-
coder is power normalized to guarantee that E[‖g(s)‖2] = 1.
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In this work, we focus on analog JSCC mappings based on
geometric curves that fill the source space efficiently.

The channel distortion is modeled as Additive White
Gaussian Noise (AWGN). Thus, the received signal can be
expressed as

y = x+ n, (2)

where n ∼ N (0, σ2
n) is a real-valued Gaussian random vari-

able. At reception, an estimate of the source symbols ŝ =
[ŝ1, ŝ2]T is calculated from the received symbol y by using
an appropriate analog decoder. Thus, the decoder will be a
function h : R→ R2 such that ŝ = h(y).

In the next sections, the optimal non parametric mappings
are first obtained for this scenario. Then, a parametric version
of these mappings is proposed as a more practical alternative.

3. NON PARAMETRIC ANALOG MAPPINGS

The objective of analog communications is to transmit the
source information minimizing the distortion between the
source symbols and the estimates at the decoder output. In
this work, Minimum Square Error (MSE) will be used as
distortion measure. In this case, the optimal analog JSCC
mappings and the corresponding decoder can be obtained by
using the iterative algorithm presented in [11]. This algorithm
is based on an alternating optimization between the analog
encoder and the decoder to decrease the MSE cost function
successively at each iteration.

The analog decoder can be calculated directly given the
encoder g(·) according to the Minimum Mean Square Error
(MMSE) criterion, i.e.

h(y) = E[s|y] =

∫
s ps(s) pn(y − g(s)) ds∫
ps(s) pn(y − g(s)) ds

, (3)

where pn(x) = (2πσ2
n)−1/2 exp

(
−x2/σ2

n

)
represents the

Gaussian noise distribution.
Unlike the decoder, the optimal encoder cannot be ex-

plicitly calculated from the decoder. However, [11] proposes
an steepest descent algorithm where the gradient of the cost
function, subject to a power constraint, is given by

∇J [g] = λps(s)g(s)−∫
h′(g(s) + n)[s− h(g(s) + n)]pn(n)ps(s)dn, (4)

where λ is a Lagrange multiplier to satisfy the transmit power
constraint P [g] =

∫
g2(s)ps(s)ds ≤ P . This gradient en-

ables us to iteratively update the encoder by using the decoder
previously obtained.

As observed, (3) and (4) require the numerical calculation
of involved integrals. Source and channel spaces are hence
discretized and the analog encoder-decoder duple is specif-
ically defined for the considered points. A mapping table
needs to be stored at the transmitter to encode the source sym-
bols, while the corresponding table for the decoder is at the

receiver. Notice that the performance of the resulting map-
pings largely depends on the resolution of this discretization
step, which in turn determines the table sizes. Indeed, the op-
timal encoder-decoder duple is different for each noise vari-
ance. Thus, we have to calculate the mapping table and the
corresponding decoder for each potential value of the noise
variance and store those tables at the transmitter and receiver.
On the other hand, the optimization problem is non convex
and the algorithm can converge to local minima. The elec-
tion of a good initial conditions and the use of optimization
techniques like noisy channel relaxation [13] can mitigate this
problem and avoid poor local minima.

4. PARAMETRIC ANALOG MAPPINGS

Parametric mappings are advantageous with respect to the
non parametric ones because they allow to lower the com-
putational complexity of the general MMSE decoding. Also,
the mapping can be updated depending on the signal proper-
ties and the channel conditions by adapting their parameters.

The shape of the non parametric mappings obtained in
the previous section suggests that a linear mapping of the
source symbols is optimal for low SNRs. However, the shape
of these mappings resembles a sinusoidal function in the
medium and high SNR region. For example, Figure 1 shows
the non parametric mapping obtained for SNR = 25 dB. In
this figure, the red points define the curve employed to fill
the bi-dimensional source space, and the blue lines represents
the mapping from the source symbols to the corresponding
channel symbols. Similar conclusions were obtained in [10]
for the transmission of multivariate Gaussian sources by us-
ing Power Constrained Channel Optimized Vector Quantizer
(PCCOVQ). Notice that these encoders can be interpreted
as a discrete version of the optimal analog JSCC mappings.
These results also corroborate the theoretical analysis of [7]
for the considered ρ values.

After examining the non parametric mappings obtained
for different SNRs, we propose to use this parametric curve:

K(t) = UΣ

[
t− 1

2α sin(αt)
∆ sin(αt)

]
, (5)

where K(t) represents the point into the bi-dimensional
space corresponding to the parameter t on the curve, and
Cs = UHΣU is the eigendecomposition of Cs, with U
the matrix with the eigenvectors of Cs as columns, and
Σ = diag {λ1, λ2}, λ1 > λ2, the eigenvalues of Cs. The
parameters α and ∆ represent the frequency and the ampli-
tude of the sinusoidal function, respectively, hence defining
the shape of the proposed mapping. The optimal values for
these parameters depend on the source correlation and SNR
values. An adequate optimization of α and ∆ is important to
closely approach the optimal cost-distortion tradeoff.

The optimization step can be implemented by a exhaustive
search on the parameter space to jointly determine the optimal

3762



Fig. 1. Non parametric mapping obtained for SNR = 25 dB .

values for α and ∆. Although computationally costly, the
optimal parameter values can be calculated offline and then
stored into a lookup table. The optimization procedure can
be carried out efficiently by fitting the optimal non parametric
mappings. We have applied non-linear least squares fitting to
the non-parametric curves by means of a gradient algorithm
subject to a power constraint to obtain the optimal values of
α and ∆ for a range of SNR between 0 dB and 30 dB [14].
These values are presented in Table 1 and Table 2 for correla-
tion factor ρ = 0.9 and ρ = 0.75, respectively.

Equation (5) defines the parametric curve that maps points
from the channel space to the source space, but we also need
to specify how the points on the source space are mapped to
the parametric curve. The classical solution consists in map-
ping each source point to the closest point on the curve in
terms of the Euclidean distance, i.e.

x = M(s) = arg min
t

‖s−K(t)‖2. (6)

This mapping operation based on the Euclidean distance has
a low computational complexity, but it does not exploit the in-
formation about the channel noise. However, this information
can be partially integrated into the analog encoder with

x = N(s) = arg min
t

∫ ∞
−∞
‖s−K(u)‖2pn(u− t)du (7)

which simplifies to the minimum distance encoder in (6) by
assuming that the channel noise is zero, i.e. that the noise
distribution is pn(x) = δ(x).

An estimate of the source symbols is computed at the re-
ceiver by the analog decoder from the noisy received sym-
bols. The optimal decoder is given by (3) since it minimizes
the distortion (MSE) between the source and the estimated
symbols. Recall that the application of MMSE decoding re-
quires the discretization of the source and channel spaces to
numerically calculate the corresponding integrals.

SNR (dB) 0 5 10 15 20 25 30

α 1.95 3.02 4.63 5.11 6.9 8.2 10.39
∆ 0.008 0.03 0.14 0.16 0.93 1.2 1.44

Table 1. Optimal values of α and ∆ for 2:1 analog JSCC of
bivariate Gaussian sources with rho = 0.9.

SNR (dB) 0 5 10 15 20 25 30

α 2.0 2.2 3.79 4.66 5.01 6.52 8.52
∆ 0..001 0.001 0.14 0.83 1.24 1.41 1.55

Table 2. Optimal values of α and ∆ for 2:1 analog JSCC of
bivariate Gaussian sources with rho = 0.75.

For the case of independent sources, a two-stage receiver
based on the concatenation of a linear MMSE filter and a
Maximum Likelihood (ML) decoder was proposed in [15].
This approach provides similar performance to the optimal
MMSE decoder with minimum complexity and delay. In this
work, we apply this strategy for correlated sources, and there-
fore the source symbol estimates are calculated as

ŝ = h(y) = K

(
y

1 + σ2
n

)
. (8)

5. RESULTS

In this section we present the results of the computer exper-
iments carried out to evaluate the performance of the para-
metric and non parametric mappings described in the previ-
ous sections. The obtained results are compared to the corre-
sponding optimal bounds for the considered scenarios and to
the performance of other suitable analog mappings.

The performance of analog communications is measured
in terms of the Signal-to-Distortion Rate (SDR) with respect
to the SNR. The SDR is defined as

SDR(dB) = 10 log10(σ2
s/MSE),

where σ2
s is the source variance and the term MSE =

1/2
∑2
i=1E[‖ŝi − si‖2] represents the MSE between the

source and the estimated symbols.
The optimal performance for analog communications is

determined by the optimal cost-distortion tradeoff curve. In
the literature, this upper bound is referred to as the Optimum
Performance Theoretically Attainable (OPTA) and it is calcu-
lated by equating the rate distortion of the source R(D) and
the channel capacity, C(σ2

n). Assuming normalized channel
symbols, the capacity of an AWGN channel is given by

C =
1

2
log

(
1 +

1

σ2
n

)
. (9)
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Fig. 2. SDR for different mappings with ρ = 0.9.

For multivariate Gaussian sources and the MSE as the distor-
tion criterion, the rate distortion function can be represented
parametrically as [16]

D(θ) =
1

M

M∑
i=1

min[θ, λi],

R(θ) =
1

M

M∑
i=1

max

[
0,

1

2
log

(
λi
θ

)]
, (10)

whereD(θ) is the distortion function, λi represents the eigen-
values of the covariance matrix Cs and M is given by the
number of eigenvalues larger than zero.

By equating (9) and (10), we obtain the following expres-
sion for the OPTA bound

OPTA =


2σ2

n+2
2σ2

n+(1−ρ) SNR < 2ρ
1−ρ√

σ2
n+1

σ2
n(1−ρ2)

SNR ≥ 2ρ
1−ρ .

(11)

In the computer experiments, we consider the transmis-
sion of source symbols generated from a bivariate Gaussian
distribution with zero mean and covariance matrix Cs. Each
pair of source symbols is 2:1 compressed by using (7), and
the resulting channel symbol is transmitted over an AWGN
channel with noise variance σ2

n. At reception, the observed
noisy symbol is decoded with the two-stages receiver and the
distortion with respect to the original symbols is measured.

Figure 2 and Figure 3 show the performance curves for
both the proposed parametric mapping with the encoder de-
fined in (6), and the optimal non parametric mapping with
ρ = 0.9 and ρ = 0.75, respectively. The OPTA calculated
according to (11) is also plotted in the figures to represent
the theoretical optimal performance. In order to complete the
analysis, we also include the performance achieved for other
two parametric analog JSCC mappings that can be applied
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Fig. 3. SDR for different mappings with ρ = 0.75.

for the considered communication model. The first of them is
the Archimedean spiral [1, 2], traditionally employed for 2:1
compression of independent sources. In this case, the source
samples are first decorrelated and then encoded with this map-
ping. The second one is a variant of the Scalar Quantizer Lin-
ear Coder (SQLC) [9] that is referred to as alternating sign
SQLC and was proposed in [17] for bivariate Gaussian over
Broadcast Channels (BC). This BC mapping defines a projec-
tion matrix H, which has been assumed to be H = UΣ.

As observed in both figures, the performance of the pro-
posed parametric mapping closely approaches the OPTA, and
significantly outperforms the other two parametric mappings
for all range of SNRs. Notice that the proposed mapping
and the alternating sign SQLC present very similar perfor-
mance for SNRs around 30 dB. In addition, the performance
of the parametric and non parametric mappings is practically
the same for low SNRs (SNR < 20 dB), but a slight differ-
ence can be appreciated in the high SNR region. This is more
noticeable as the correlation decreases (ρ = 0.75). This gap
is because the shape of the optimal mappings in that region
can no longer be represented strictly by (5), and the use of a
suboptimal decoder. The worst performance corresponds to
the use of the Archimedean spiral since this mapping is not
able to exploit the correlation between the source symbols.

6. CONCLUSION

In this work, we have studied the application of analog JSCC
mappings for the transmission of correlated Gaussian sources
over AWGN channels. We have proposed a parametric curve
based on sinusoidal functions as approximation to the optimal
non parametric mappings, whose high complexity and limited
flexibility makes their practical implementation rather diffi-
cult. The proposed analog JSCC mapping closely approaches
the optimal performance with lower complexity and delay.
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