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Abstract—Distributed filtering in network is a fundamental
problem in the field of network signal processing. Each node
estimates or tracks some unknown state relying on the private ob-
servation and the fusion information from the network. Network
fusion is generally a way of interaction over network, by which
nodes can learn from each other and make decision mutually.
Unlike conventional methods, we construct a distributed filter
using Bayesian network game as a fusion tool, where all the
nodes exchange their best strategies instead of exchanging local
estimators. The proposed algorithm is a coalition of signal
processing and game theory in network, which can be extended
to more general signal processing and decision making models.

Index Terms—distributed filtering, network signal processing,
network game, Bayesian game

I. INTRODUCTION

Distributed filtering in network has been an appealing
research point in the field of network signal processing [1]–[4]
recently. The basic application deals with nodes in a network
collaboratively tracking the real trajectory of an unknown
state with limited information and interaction capability. A
typical distributed network filter iterates with two steps, local
innovation and network fusion [4]–[6]. For a specific node,
the local innovation executes estimation update using new
private observations, which can be configured with traditional
signal processing method such as RLS, RLMMSE and Kalman
filter [7] independent of network topology. The network fusion
updates self estimation using fused information from other
nodes. Existing network fusion strategies include incremental
[8], [9], consensus [4], [6], [10]–[14], diffusion [15], [16] and
network game [5]. All these strategies mingle and process the
network information locally with commutative messages such
as observations, estimations, auxiliary variables or actions.

We focus on the widely used Kalman filter (KF) in a
network structure in this paper. A distributed Kalman filter
builds in some network fusion algorithms, like consensus [6],
[10]–[12] and diffusion [16], [17]. All of these methods can
be seen as parameter-based fusion, where the information
exchanged over network usually are local estimations on a
shared state variable.

In contrast, the Bayesian network game is powerful to
analyze the interaction of strategies among players in a net-
work with incomplete information. Ceyhun Eksin et al. [18]
proposed an analytical solution to a Bayesian network game
of quadratic utilities (BQNG), which is a seminal work incor-
porating network game into signal processing in network. The

optimal actions, derived by best strategies, incorporate with
all available historical information and help nodes refine their
estimations on a static unknown state. Exchanging strategies,
rather than parameters, can be seen as a new type of strategy-
based fusion way.

In [5], we proposed a recursive distributed filter for multiple
observations based on BQNG fusion. However, it only deals
with the estimation problem on a static state. In order to track
a time-varying object, we construct a distributed KF extending
our previous work, namely the BQNG KF.

The paper is organized as follows. Sec.II describes the
system model of the BQNG KF. Sec.III provides the algorithm
inference of the proposed filter in detail, while Sec.IV exhibits
its numerical performance. The conclusion ends up in Sec.V.

II. SYSTEM MODEL

Consider a network tracks on an unknown state θt in a
distributed manner. The network is represented by an undi-
rected connected graph G = (V, E) with its node set as
V = {1, 2, ..., N} and its edge set as E . The unknown state
θt varies with time

θt = ftθt-1 + wθ,t, (1)
where ft is the transition factor and wθ,t ∼ N (0, σ2

θ,t) is the
transition noise. Node i receives an observation on θt as

si,t = hi,tθt + ni,t, ∀i ∈ V, (2)
where hi,t is the observing factor and ni,t ∼ N (0, σ2

i,t) is the
measurement noise independent among nodes. si,t is private
for node i and can not be shared with other nodes.

The fusion information comes from a network game, in
which each node performs an action following a specific
strategy with incomplete information. Use ai,t to denote the
action of node i at t, which is supposed to carry the fusion
information. Node i is granted a quadratic utility as

ui,t(ai,t, aj,t, θt) = −1

2
a2i,t+

∑
j∈V\i

βij,tai,taj,t+δai,tθt, (3)

where βij,t ∈ R evaluates the reciprocal effect between i and
j, j ∈ V\i while δ ∈ R measures the influence of θt. Node i
is only allowed to communicate with its neighbors, so βij,t =
0, ∀j /∈ N (i) where N (i) represents the neighbor set of i. The
quadratic utility ensures the best solution is exclusive as long
as existed, which is perfectly suitable here since an intelligent
node always prefers an unique action for the highest reward.
The quadratic utility has been widely used in applications like
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cognitive radio [19], [20] and resource allocation [21]. The
equilibria analysis of the game can refer to [22]–[24].

However, solving (3) requires complete knowledge of
{aj,t}j∈V\i and θt, which is infeasible with a noisy observa-
tion model in a network. Node i has to reason about them by
history at t, i.e., the private observation si,t and the strategies
of neighbors from t-1. That is why we need the Bayesian
network game. Let φi,t be the strategy of i in the BQNG,
which explains a mapping from the history hi,t to ai,t

φi,t : hi,t 7→ ai,t. (4)
Fig. 1 illustrates hi,t of node i, which can be expressed as

hi,t = {hi,t-1, si,t, {φj,t-1}j∈N (i)}. (5)

k j

i

i ts

j tk t

i

Fig. 1. History of Node i.

Use Ei,t[·] as a compact notation of i’s conditional belief
on hi,t. Take the expectation to (3) and

ui,t(ai,t,Ei,t[aj,t],Ei,t[θt])

= −1

2
a2i,t +

∑
j∈V\i

βij,tai,tEi,t[aj,t] + δai,tEi,t[θt],
(6)

which is strictly concave with respect to ai,t. The optimal
action a∗i,t can be obtained by maximizing utility in (6) as

a∗i,t = argmax
ai,t∈R

ui,t(ai,t,Ei,t[aj,t],Ei,t[θt]). (7)

The whole network may reach an equilibrium provided that
all nodes play by their optimal actions.

In BQNG, node i needs to build up beliefs Ei,t[st] and
Ei,t[θt] on the unknown parameters st and θt, where st =
[s1,t, s2,t..., sN,t]

T is the global observing vector. Let˜denote
prior beliefs andˆdenote posterior beliefs. Suppose the prior
beliefs Ẽi,t[st] and Ẽi,t[θt] are linear Gaussian models, ex-
pressed as

Ẽi,t[st] ∼ N (L̃i,tst, M̃ss,i,t),

Ẽi,t[θt] ∼ N (k̃Ti,tst, M̃θθ,i,t),
(8)

where L̃i,t ∈ RN×N , k̃i,t ∈ RN , M̃ss,i,t ∈ RN×N and
M̃θθ,i,t ∈ RN×N . Proved in [18], the solution to (7) in linear
Gaussian model is of a form as

ai,t = vi,tẼi,t[st], (9)
where vi,t ∈ RN is the crucial to the best strategy φi,t.

III. ALGORITHM

To take full advantage of all available information, the
BQNG KF is designed in two layers as Fig. 2.

The filter layer updates estimation based on available infor-
mation, including si,t as private observation and ai,t as fusion
information. The game layer accomplishes the information
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Fig. 2. Structure of the BQNG KF.

fusion among nodes by the Bayesian network game and
generates ai,t as one-way feedback to the filter layer.

In our algorithm, all the nodes observe and play alternating-
ly at the same rate, which suggests a big difference comparing
with the model in [18].

A. Filter Layer
This layer engages private observation si,t and fusion in-

formation ai,t together to track the unknown state θt. The
parameter structure is illustrated in Fig. 3.
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i t i ti t
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a

Fig. 3. Structure of the filter layer.

For θt in (1), the Local KF deals with local update using
si,t with two steps, the KF prediction and the KF update.
Use θ̌Ki,t to denote the prediction on θt based on θ̃Ki,t, which
carries information from last moment that θ̃Ki,t = θ̂Ri,t-1. The
KF prediction is

θ̌Ki,t = ftθ̃
K
i,t, (10)

Q̌K
i,t = ftQ̂

R
i,t-1f

T
t + σ2

θ,t. (11)

The KF update is equivalent to be a RLMMSE that
θ̂Ki,t = θ̌Ki,t +KK

i,t(si,t − θ̌Ki,t), (12)

Q̂K
i,t = (I −KK

i,th
T
i,t)Q̌

K
i,t, (13)

where KK
i,t = Q̌K

i,thi,t(σ
2
i,t + hT

i,tQ̌
K
i,thi,t) is the KF gain

matrix.
Afterwards, the filter layer implements a RLMMSE to do

update from θ̂Ki,t to θ̂Ri,t using ai,t. By the analysis in [5], ai,t
has the following form

ai,t = HG
i,tθt + nG

i,t, (14)
where nG

i,t ∼ N (0, (σG
i,t)

2). Equation (14) can be regarded as
a linear measure on θt and the update follows

θ̂Ri,t = θ̂Ki,t +KR
i,t(ai,t −HG

i,tθ̂
K
i,t), (15)

Q̂R
i,t = (I −KR

i,t(H
G
i,t)

T)Q̂K
i,t, (16)

where KR
i,t = Q̂K

i,tH
G
i,t((σ

G
i,t)

2 + (HG
i,t)

TQ̂K
i,tH

G
i,t).

The estimation remains unbiased provided that the prior
estimation θ̃Ki,0 is unbiased since the KF and the RLMMSE
are both unbiased filters.
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B. Game Layer

This layer calculates the fusion result ai,t by BQNG and
constructs a linear Gaussian measure function in the form
of (14). Please refer to [18] to find the basic theory of the
BQNG in detail. Briefly speaking, each node of the network
builds estimators in (8) locally and acts in the form of (9) to
maximize self utility in (6) through a BQNG. Fig. 4 diagrams
the parameter setting of the game layer.

t t+
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i t t
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i t t

i t t
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Fig. 4. Structure of the game layer.

The Prior Update renewals beliefs Ẽi,t[st] and Ẽi,t[θt] by
reasoning from t-1 using {vj,t-1}j∈N (i). These beliefs are used
for calculating the action in the BQNG as illustrated in Fig. 4.
The Prior Update remains the structure of the beliefs as (8),
which is proved in Theorem1. This structure is crucial to
solve the BQNG analytically, as indicated later in (27).

Equation (8) and (9) indicates ai,t = vi,tL̃i,tst. Since L̃i,t

is local belief and st is not available as a global vector, the
real strategy message that could be transmitted among nodes
is vi,t, which means {φj,t-1}j∈N (i) = {vj,t-1}j∈N (i).

By Lemma 2 in [18], we construct observing matrix HS
i,t =

[LT
j1,t-1vj1,t-1, ..., L

T
jdi ,t-1

vjdi ,t-1] ∈ RN×di and the update of
the posterior beliefs on st-1 and θt-1 acts as

Gθ,i,t = M̃θs,i,t-1H
S
i,t((H

S
i,t)

TM̃ss,i,t-1H
S
i,t)

-1,

Gs,i,t = M̃ss,i,t-1H
S
i,t((H

S
i,t)

TM̃ss,i,t-1H
S
i,t)

-1,

k̂Ti,t-1 = k̃Ti,t-1 +Gθ,i,t((H
S
i,t)

T − (HS
i,t)

Tk̃i,t-1),

L̂i,t-1 = L̃i,t-1 +Gθ,i,t((H
S
i,t)

T − (HS
i,t)

TL̃i,t-1),

M̂θθ,i,t-1 = M̃θθ,i,t-1 −Gθ,i,t(H
S
i,t)

TM̃sθ,i,t-1,

M̂ss,i,t-1 = M̃ss,i,t-1 −Gs,i,t(H
S
i,t)

TM̃ss,i,t-1,

M̂θs,i,t-1 = M̃θs,i,t-1 −Gθ,i,t(H
S
i,t)

TM̃ss,i,t-1.
(17)

Then we get the posterior beliefs on st-1 and θt-1
Êi,t[st-1] ∼ N (L̂i,t-1st-1, M̂ss,i,t-1),

Êi,t[θt-1] ∼ N (k̂Ti,t-1st-1, M̂θθ,i,t-1).
(18)

Equation (1) indicates the relationship between θt and θt-1 as
θt-1 = ft

-1θt + ft
-1wθ,t, (19)

which implies an unbiased backward inference from t to t-1.
The global observing vector st has the form

st = Ht1θt + nt, (20)
where Ht is a diagonal matrix with Ht(i, i) = hi,t and nt ∼
N (0,Σ2

t ) with Σ2
t (i, i) = σ2

i,t and 0 for else. Substitute (19)
into st-1 = Ht-11θt-1 + nt-1 we get

st-1 = Ht-11(ft
-1θt + ft

-1wθ,t) + nt-1. (21)
Then implement elimination to (20) and (21)
st = HtftH

-1
t-1st-1 +Ht1wθ,t +HtftH

-1
t-1nt-1 + nt, (22)

which is the transition from st-1 to st. Equation (22) declares

that st could be regarded as a linear observation of st-1 added
with a zero-mean Gaussian noise. Define Hs,t and ws,t for
simplicity and

st = Hs,tst-1 +ws,t, (23)

where the observing matrix Hs,t = HtftH
-1
t-1 and the noise

ws,t = Ht1wθ,t + HtftH
-1
t-1nt-1 + nt ∼ N (0,Σ2

s,t). From
(23) st-1 can be expressed as

st-1 = H-1
s,tst +H-1

s,tws,t. (24)
Substitute this into (18) and

Ẽi,t[st] ∼ N (L̃i,tst, M̃ss,i,t),

Ẽi,t[θt] ∼ N (k̃Ti,tst, M̃θθ,i,t),
(25)

where L̃i,t = L̂i,t-1H
-1
s,t, k̃Ti,t = k̂Ti,t-1H

-1
s,t, M̃ss,i,t =

M̂ss,i,t-1 + L̂i,t-1H
-1
s,tΣ

2
s,tL̂

T
i,t-1 and M̃θθ,i,t = M̂θθ,i,t-1 +

k̂Ti,t-1H
-1
s,tΣ

2
s,tk̂i,t-1. The Prior Update is done with the struc-

ture in (8) holds.
As for the BQNG, node i can use beliefs in (25) to calculate

its best action ai,t as a feedback to the filter layer and output its
best strategy message vi,t to its neighbors for the Prior Update
in the next iteration. By Lemma 1 in [18], we construct matrix
Lt ∈ RN2×N2

, vector kt ∈ RN2

and vt ∈ RN2

as below
Lt =


L̃T
1,t -β12,tL̃T

1,tL̃
T
2,t · · · -β1N,tL̃

T
1,tL̃

T
N,t

-β21,tL̃T
2,tL̃

T
1,t L̃T

2,t · · · -β2N,tL̃
T
2,tL̃

T
N,t

... · · ·
. . .

...
-βN1,tL̃

T
N,tL̃

T
1,t -βN2,tL̃

T
N,tL̃

T
2,t · · · L̃T

N,t

,
kt = [k̃T1,t, k̃

T
2,t, . . . , k̃

T
N,t]

T
,

vt = [vT1,t, v
T
2,t, . . . , v

T
N,t]

T
.

(26)
Node i can locally calculate strategy coefficients vt by solving
the following equilibrium equations

Ltvt = δkt. (27)
The action of node i should be

ai,t = vi,tL̃i,tst. (28)

In fact, the aim of this game is to figure out the strategy
vi,t for information fusion. The action of node i depends on
its strategy and its cognition on st, which may be different
among nodes. We just need to determine a cognitive manner
on st to calculate an attainable ai,t for the filter layer. For
example, we can simply assume that the cognition on st to be
1si,t for each node i, etc.

Theorem 1. In the game layer, structure in (8) always hold
with initialization

Ẽi,0[s0] ∼ N (L̃i,0s0, M̃ss,i,0),

Ẽi,0[θ0] ∼ N (k̃Ti,0s0, M̃θθ,i,0).
(29)

Proof. We prove by induction. At t = 0, the prior estimation
on s0 and θ0 in (29) is linear Gaussian variables. Suppose at
t-1, Ẽi,t-1[st-1] and Ẽi,t-1[θt-1] satisfy linear Gaussian assump-
tions, we can verify the Gaussian form of these estimators
remains in t by (25). The proof is done and it enables the
filter to work in a recursive way.
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IV. NUMERICAL RESULTS

For specific analysis, the game needs to be initialized in a
reasonable way. The utility parameters in (6) are set up as∑

j∈V\i

|βij,0| = 0.5, δ = 0.5, (30)

which ensures the existence of equilibrium solution according
to Remark 3 in [18]. The estimators of the game are initialized
as (29), where L̃i,0 = 1eTi , k̃Ti,0 = eTi , M̃θθ,i,0 = σ2

i,0,
M̃θs,i,0 = σ2

i,0ei
T and M̃ss,i,0 = σ2

i,0(1ei
T+eiei

T). ei ∈ Rn

is the vector where 1 in i’th column and 0 otherwise, and
ei = 1− ei.

A regular network with grid structure and a random network
are considered, respectively. Both networks are generated with
25 nodes as Fig. 5 showed.

(a) The regular network. (b) The random network.

Fig. 5. The networks with 25 nodes.
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(a) θ̂Ri,t in regular network.
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(b) θ̂Ri,t in random network.

Fig. 6. The BQNG KF in networks.

At beginning, θ0 = 5, ft = 1.1, σ2
θ,t = 0.3. For the

observing function in (2), hi,t = 1, σ2
i,t = 1, ∀i ∈ V . Plots

in Fig. 6 exhibit the performance of the BQNG KF in both
networks, respectively. The y-axis labels the estimation output
θ̂Ri,t while the x-axis labels the time slice. The Black-star-
line marks the real trajectory of θt in both figures while
the ordinary curves display the performances of all nodes in

network, which could successfully track the change of θt with
relatively high accuracy after a few iterations.
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(a) ∥ θ̂Rt − 1θt ∥ in regular network.

0 1 2 3 4 5 6 7 8 9
Time

0

1

2

3

4

5

6

7

||
θ̂ t

R
−1

θ t
||

The BQNG KF
The Diffusion KF
The Consensus KF

(b) ∥ θ̂Rt − 1θt ∥ in random network.

Fig. 7. The estimation error.

To be more persuasive, we simulate the Diffusion KF [15]
and the Consensus KF [6] under the same condition in both
networks. Define θ̂Rt = [θ̂R1,t, ..., θ̂

R
N,t]

T as the estimation
vector at t. We use the modulus of the estimation error
vector to measure the global estimation performance of the
network at t, expressed as ∥ θ̂Rt − 1θt ∥. Fig. 7 compares the
estimation errors among the BQNG KF, the Diffusion KF and
the Consensus KF in both networks. Each curve is the average
of 100 sets of observations. We can find that the BQNG KF
performs no worse than the others. The Diffusion KF and the
Consensus KF perform better at beginning since the they use
neighbor’s information at first iteration while the BQNG KF
does not. As time goes, the BQNG KF shows its ability to
fusion the information in network more efficiently. The BQNG
KF proves its ability in estimation and its robustness against
diversiform topologies.

V. CONCLUSION

We have presented a distributed network filter integrating
the KF and the BQNG together consisting of two layers. The
filter layer is the skeleton that deals with estimation update
while the game layer is configured as a network fusion tool
that provides one-way feedback to the filter layer. The BQNG
KF is a novel way to utilize the network information, and
can be applied to more signal processing and decision making
problems in network.
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