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ABSTRACT

In this paper, we consider a simple model of distributed sen-
sor fusion problem in sensor networks with asymmetric links,
where the common goal is linear parameter estimation. For
the realistic scenario of bandwidth-constrained networks, we
propose a least square approach, based on distributed quan-
tized consensus algorithms, to compute the ideal centralized
sample mean estimate. Analytical results show that the pro-
posed approach is effective in smearing out the quantization
errors, and outperforms the centralized approaches with re-
spect to the estimation performance. Simulation results are
provided to validate the analytical results.

Index Terms— Distributed sensor fusion, bandwidth-
constrained network, asymmetric links, consensus algorithm

1. INTRODUCTION

A fundamental problem in sensor networks is sensor fusion.
In this paper we focus on a specific and simple model of a
distributed sensor fusion problem in bandwidth-constrained
sensor networks, where the common goal is linear parameter
estimation based only on local information.

Consider a sensor network of n homogeneous nodes, each
node makes observation of an unknown parameter θ ∈ R,

yi = θ + wi, i = 1, 2, . . . , n,

where wi are zero mean, i.i.d. Gaussian noises with vari-
ance σ2. If all these samples {yi}ni=1 are collected by a fu-
sion center perfectly, the optimal centralized sensor fusion
scheme leads to the ideal sample mean estimate (ISME) θ̂ ,
(1/n)

∑n
i=1 yi [1].

However, due to bandwidth limitations, the observations
have to be quantized and estimation can only be made based
on these quantized values. There are several works in the
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literature that investigate this problem in a centralized set-
ting [2, 3]. Analytical results show that the performance is
degraded by a factor with respect to the ISME θ̂ both for the
uniform quantizer [2] and the probabilistic quantizer [3].

Recently, a number of distributed algorithms have been
proposed to address the problem of sensor fusion with quan-
tized communication [4–12]. However, most of the above
works assume that the communication links between nodes
are symmetric, which is in general not the case due to inter-
ference, packet collision, etc. Moreover, the results in [4–6,9]
reveal that no matter which kind of static quantizers, there is
always some gap between the local estimate and the ISME
θ̂ unless some complicated dynamic mechanisms are adopted
[7,10,11]. In the previous work [12], we proposed a two-stage
averaging based distributed algorithm for sensor fusion over
asymmetric and bandwidth-constrained sensor networks. The
ISME θ̂ can be achieved at each node in mean square sense.
But an increasing memory size of O(n) is imposed, which
limits its application in large-scale networks.

In [13], it is shown that distributed algorithms by exploit-
ing additional information perform better than the centralized
approaches with respect to adaption and learning over net-
works. Hence, a natural and interesting question is: Can
distributed algorithms achieve the performance level of the
ISME θ̂ while meeting the scalable requirement in the pres-
ence of bandwidth constraints? In the following, we will
address this problem and give a positive answer. This is
achieved by developing a least square approach based on
consensus strategies.

2. PROBLEM FORMULATION

2.1. Network model

Let us consider a bandwidth-constrained sensor network con-
sisting of n nodes that are linked via asymmetric links. The
communication network over which nodes exchange data can
then be represented by a directed graph G = (V, E), where
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V = {1, 2, . . . , n} is the set of nodes, E ⊂ V × V denotes all
the asymmetric links between nodes. Each node may transmit
data to its out-going neighborsN+

i , {j : (j, i) ∈ E} and re-
ceive data from in-coming neighbors N−i , {j : (i, j) ∈ E}.
Let d+

i = |N+
i | and d−i = |N−i | denote the in-degree and

out-degree, respectively. We also define A ∈ Rn×n as the
adjacency matrix of G. In order to avoid any isolated nodes,
we assume that G is strongly connected, i.e., each node can
reach any other node via a directed path (possibly multi-hop).

For sensor networks with limited bandwidth, each node
needs to quantize its data before transmission. We adopt the
probabilistic quantization scheme used in [3–5, 12]. Specifi-
cally, each node quantizes the scalar data x ∈ R in a proba-
bilistic way

Q(x) =

{⌈
x
∆

⌉
∆, with probability px,∆,⌊

x
∆

⌋
∆, with probability 1− px,∆,

(1)

where px,∆ = x/∆−bx/∆c, b·c and d·e denote the floor and
ceiling functions, respectively. It is well known that [4, 5]

E{Q(x)} = x, E
{

(Q(x)− x)2
}
≤ ∆2/4. (2)

We can thus rewrite Q(x) = x + u, where u denotes the
quantization error satisfying u ∈ [−∆,∆]. As claimed in [4],
the quantization scheme (1) is equivalent to a substractively
dithered method. It is thus natural to assume that the quan-
tization errors are temporally independent and independent
from the input.

2.2. Distributed consensus algorithm for bandwidth-
constrained networks

We let its measurement yi as the initial guess of θ for each
node i. Starting from xi(0) = yi, node i updates its variable
iteratively,

xi(t+1) = xi(t)−αd+
i Q(xi(t))+α

∑
j∈N+

i

Q(xj(t))+βsi(t),

(3)
where α < 1/maxi d

+
i , β > 0 is a tuning parameter, and

si(t) is the surplus variable. Here si(t) is introduced to com-
pensate for the unidirectional effects of communication links,
which is updated in the following way

si(t+ 1) = si(t)− αd−i Q(si(t)) + α
∑

j∈N+
i

Q(sj(t))

−
[
xi(t+ 1)− xi(t)

]
, (4)

with the initial condition si(0) = 0, ∀i = 1, 2, . . . , n.
The recursions (3) and (4) form the basis of our distributed

sensor fusion scheme for asymmetric sensor networks with
limited bandwidth. Each node i keeps track of the state xi(t)
along with the surplus variable si(t) to locally record the
state changes of individual nodes. This scheme is inspired by
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Fig. 1: States of algorithm (3) over a directed ring graph with
n = 4 and ∆ = 1.

the average consensus algorithm introduced in [14] for multi-
agent systems with infinite bandwidth. In order to implement
(3) and (4), each node needs to know both its in-degree and
out-degree. Such kind of information seems to be indispens-
able for distributed algorithms over networks with asymmet-
ric links, e.g., [14–17]. We point out that the ISME θ̂ can be
achieved at each node if the bandwidth is infinite; see [14,17].
However, the quantization operationQ(·) deteriorates the per-
formance, causing the states of (3) to fluctuate around θ̂ with
non-vanishing errors; see Fig.1 for an illustration.

Our goal in this paper is to design an appropriate approach
to mitigate the quantization effects in (3) and (4) such that the
ISME θ̂ can be asymptotically achieved at each node.

3. MITIGATING THE QUANTIZATION EFFECT: A
LEAST SQUARE FORMULATION

One of the key properties of the quantization scheme (1) is
that the quantization errors u’s are zero-mean, temporally
independent random noises. This temporal information has
been used in [8, 12] to investigate the consensus seeking over
symmetric and asymmetric networks, respectively. However,
a slow convergence during the transient period is observed,
which will consume much energy to achieve an estimate with
desired accuracy.

In this paper, we adopt a different approach than [8,12] to
mitigate the quantization effects. Our main idea is motivated
by the following result.

Theorem 1. Assume that G is strongly connected, for suffi-
ciently small β > 0, the state x(t) of (3) under the quantiza-
tion scheme (1) converges to θ̂ in mean, i.e.,

lim
t→∞

E{x(t)} = 0.

Proof. For each i, write Q(xi(t)) = xi(t) + ui(t) and
Q(si(t)) = si(t) + vi(t), where ui(t), vi(t) are the quanti-
zation errors. Stack xi(t), si(t), ui(t) and vi(t) into column
vectors, we can express (3) and (4) in a compact form

z(t+ 1) = Pz(t) + αLaugw(t), (5)
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where z(t) = [x(t)T , s(t)T ]T , w(t) = [u(t)T ,v(t)T ]T and

P ,

[
I− αL βI
αL (1− β)I− αL−

]
,Laug ,

[
−L 0
L −L−

]
,

in which L , diag{d+
i }i−A and L− , diag{d−i }i−A. By

properties of (2), we have E{u(t)} = E{v(t)} = 0. Hence,

E {z(t+ 1)} = PE {z(t)} . (6)

Applying [14, Theorem 4] to (6) shows that for small β > 0,
we have limt→∞ E{x(t)} = θ̂1 and limt→∞ E{s(t)} = 0.
Thus, limt→∞ E{xi(t)} = θ̂, ∀i, completing the proof.

Theorem 1 states that the expectation E{xi(t)} at each
node i does converge to θ̂, although its realizations have a
fluctuating behavior around θ̂ as observed in Fig. 1. This re-
sult motivates us to express the state xi(t) as

xi(t) = θ̂ + noisei(t), ∀i = 1, 2, . . . , n,

where nosiei(t) is the error capturing the fluctuation from the
desired θ̂, which satisfies E{noisei(t)} → 0 as t → ∞. In
this way, we may regard xi(t) as a noisy measurement of θ̂ at
node i. Since no further distributional knowledge of noisei(t)
is available, a popular approach to filter out noisei(t) in this
case is the least square method [1]. It can be obtained by
minimizing the following cost function

Ji(t) = min
x̂∈R

t∑
s=0

bs(xi(s)− x̂)2,

where {bs}ts=0 are weighting factors that emphasize the con-
tributions of the data {xi(s)}ts=0. Following the procedures
described in [1, Chap. 8], one obtains the recursive form

x̂i(t+ 1) = x̂i(t) + γt
[
xi(t+ 1)− x̂i(t)

]
, (7)

where γt > 0 is the gain factor determined by {bs}ts=0. To
start the recursion, we let the initial guess x̂i(0) = xi(0), ∀i.

In the above framework of least square formuation, x̂i(t)
of (7) rather than xi(t) of (3) is adopted as the estimate of
θ̂ at node i. This is different from the consensus algorithms
in [14], where the focus is the convergence of x(t). We sum-
marize the proposed Distributed Least Square Estimation (D-
LSE) algorithm through consensus strategies for asymmet-
ric bandwidth-constrained sensor networks in Algorithm 1,
where its t-th iteration run by node i is presented.

4. CONVERGENCE PROPERTIES OF D-LSE
ALGORITHM

In the section, we show that the proposed D-LSE algorithm
turns out to be a convergent algorithm in the mean square
sense. We need some preliminaries.

The next result establishes the mean square boundedness
of the state x(t) of the algorithm (5). To this end, let us denote
the error by e(t) , [x(t)T , s(t)T ]T − [θ̂1T ,0]T .

Algorithm 1 D-LSE algorithm

Input: α, β, γt, yi.
Output: x̂i.
1: Initialization: xi(0) = yi, si(0) = 0.
2: Receive data from its in-neighbors N+

i : Q(xj(t)),
Q(sj(t)), j ∈ N+

i .
3: Update the states xi(t) and si(t) following (3) and (4).
4: Update the estimate x̂i(t) of θ̂ following (7).

Lemma 1. Let G be strongly connected and β > 0 be suf-
ficiently small, then there is a constant cn,Q > 0 depending
only on n and Q so that

lim sup
t→∞

E{‖e(t)‖2} ≤
nαcn,Q∆2‖Laug‖22

2
. (8)

Proof. Let Q , P−P∞, where P∞ ,

[
11T

n
11T

n
0 0

]
. Not-

ing that the sum 1T (x(t)+s(t)) = 1Tx(0) of (5) is preserved
for all t ≥ 0, and θ̂ = 1Tx(0)/n, we have

e(t+ 1) = Qe(t) + αLaugw(t), (9)

where we use the facts that L1 = 0, 1TL− = 0 and
Q[x(0)T11T /n,0]T = 0. It thus follows that

E{‖e(t)‖2} (a)
=

∥∥∥∥Qt

[
x(0)
0

]∥∥∥∥2

+ α

t−1∑
k=0

E
{∥∥Qt−1−kLaugw(s)

∥∥2
}

(b)

≤
∥∥Qt

∥∥2

2
‖x(0)‖2 +

nα∆2‖Laug‖22
2

t−1∑
k=0

‖Qk‖22,

(10)

where (a) is due to the independence assumption on the quan-
tization errors u(t) and v(t), and (b) follows from the prop-
erties of the quantization scheme Q(·).

By [14, Proposition 6], we can show that limk→∞Pk =
P∞ yielding ρ(Q) < 1. Thus, by taking limits on both sides
of (10) and using some known inequalities for matrix powers
in [18, 19], one can obtain

lim sup
t→∞

2E{‖e(t)‖2}
nα∆2‖Laug‖22

≤ c′n,Q + c′′n,Q

∞∑
k=n

k2(n−1)ρ(Q)2k,

where c′n,Q and c′′n,Q are two positive constants depending on
n and Q.

Following a similar argument as in [12], we have

∞∑
k=n

k2(n−1)ρ(Q)2k <∞,

from which the lemma follows.
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Theorem 2. Assume that G is strongly connected, and the
gain factors {γt}t≥0 satisfy

lim
t→∞

γt = 0, and
∞∑
t=0

γt =∞,

then for sufficiently small β > 0, the proposed D-LSE al-
gorithm under the probabilistic quantization scheme (1) con-
verges to the centralized estimate θ̂ in mean square sense, i.e.,

lim
t→∞

E{‖x̂(t)− θ̂1‖2} = 0.

The proof is rather technical and due to page limitation,
we do not provide it here. A sketch is as follows: We first
introduce an auxiliary recursion of ŝi(t) in the similar form of
(7) to get an augmented system of ê(t) = [ê1(t), . . . , ên(t)]T ,
where êi(t) = [x̂i(t) − θ̂, ŝi(t)]T , ∀i. A recurrent inequality
on E{‖ê(t)‖2} is then established by using Lemma 1, namely,
for large t,

E{‖ê(t+ 1)‖2} ≤ (1− γt)2E{‖ê(t)‖2}+O(γ2
t ) + o(γt),

from which we can conclude that E{‖ê(t)‖2} → 0 as t→∞.
The mean square convergence of E{‖x̂(t)‖2} thus follows.

Remark 1. Theorem 2 states that the gap between the local
estimate x̂i(t) and the centralized ISME θ̂ can be arbitrar-
ily small, which implies that the distributed approach D-LSE
would soon outperform the centralized approaches in [2, 3]
for bandwidth-constrained sensor networks.

5. SIMULATION RESULTS

We consider a random network of N = 20 nodes to moni-
tor an unknown θ = 8. Each node observes yi = θ + wi,
where wi is the Gaussian noise with variance 4. To simu-
late certain pairs of asymmetric links between nodes, we first
generate an undirected network using the random geometric
graph model: Nodes are placed uniformly at random over
[0, 1] × [0, 1] and two are connected by two unidirectional
links if the distance is less than

√
logN/N . We then remove

30% of the unidirectional links to generate a asymmetric net-
work. We put α = 1/(1 + maxi d

+
i ) and β = 0.2 for (3), and

γt =
√

0.5 log log(t+ 10)/t for (7). It is easy to check that
such γt satisfies the conditions of Theorem 2. The quantiza-
tion step-size is set ∆ = 1.

Fig. 2 depicts the intermediate state x(t) of (3), and the es-
timate x̂(t) generated by the proposed D-LSE algorithm. It is
clear that D-LSE has the ability of mitigating the quantization
effect, achieving the centralized ISME θ̂ asymptotically. This
corroborates the theoretical result given in Theorem 2. The
performance of D-LSE is measured by the mean square error
(1/n)

∑n
i=1(x̂i(t) − θ̂)2, which is averaged over 100 inde-

pendent runs. Fig. 3 shows the mean square errors of different
algorithms, from which we can easily identify that our D-LSE
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Fig. 2: Intermediate states x(t) of algorithm (3) (top) and
estimates x̂(t) generated by D-LSE (bottom) with ∆ = 1.
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Fig. 3: Comparison results of mean square error between dif-
ferent algorithms with respect to the centralized estimate θ̂.

algorithm achieves a superior estimation performance to other
distributed algorithms. Moreover, it outperforms the central-
ized approaches QSME and DES within a moderate number
of iterations, which is a direct implication of Theorem 2. This
shows the effectiveness of the least square approach of our D-
LSE algorithm in solving the distributed sensor fusion prob-
lem in sensor networks with bandwidth constraints.

6. CONCLUSIONS

In this paper, we proposed a least square approach for dis-
tributed sensor fusion in bandwidth-constrained sensor net-
works with asymmetric links. In the scheme, a surplus vari-
able is introduced to compensate for asymmetric links, and
all the nodes only communicate with their one-hop neighbors,
and keep track of local states. A least square reformulation of
these local states was then performed to generate local esti-
mates. It is shown that all such estimates converge to the ideal
centralized estimate in mean square sense. We also provide
some simulation studies to validate the theoretical results.
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