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ABSTRACT

The paper studies the max-min fair multicast multigroup beamform-
ing problem in a multi-cell environment, with perfect (instantaneous
or statistical) Channel State Information (CSI). We propose a new
general distributed algorithmic framework based on INner Convex
Approximations (INCA): the nonsmooth NP-hard problem is re-
placed by a sequence of smooth strongly convex subproblems, which
can be solved in a distributed fashion across the cells, with limited
communication overhead. Differently from renowned semidefinite-
relaxation-based schemes, the INCA algorithm is proved to always
converge to a d-stationary solution of the aforementioned class of
problems. Numerical results show that it compares favorably with
state-of-the-art algorithms.

Index Terms— Distributed optimization, inner convex approx-
imation, multicell multigroup multicasting.

1. INTRODUCTION

Multicast beamforming is a part of the Evolved Multimedia Broad-
cast Multicast Service in the Long-Term Evolution standard [1] for
efficient audio and video streaming. Multicast beamforming utilizes
multiple transmit antennas and some form of CSI to steer transmitted
power towards a group of subscribers while limiting interference to
other users and systems [2]. Multicasting can be broadly classified
into a) single-group multicasting (see [3] for state-of-the-art result-
s), where all the subscribers request a common data stream from the
transmitter; and b) multiple-group multicasting [4], where different
groups of subscribers request different data streams from the trans-
mitter. Two alternative criteria have been widely considered in the
literature to design the beampatterns, namely: a) the maximization
of the minimum received Signal to Interference plus Noise Ratio
(SINR) subject to a transmit power constraint, which is commonly
referred to as the Max-Min Fair (MMF) beamforming problem [4];
and b) the minimization of the transmit power subject to Quality-of-
Service (QoS) guarantees at the receivers of all the users [2, 5].

This paper focuses on the MMF beamforming problem for mul-
tiple-group multicasting; both single-cell and multi-cell scenarios
are considered. This problem is nonconvex, due to the noncon-
vexity of the SINR functions. Special instances of the general for-
mulation exhibit ad-hoc structures that allow them to be solved ef-
ficiently, leveraging equivalent (quasi-)convex reformulations; see,
e.g., [3, 6, 7]. In the case of general channel vectors, however, the
(single-cell) MMF beamforming problem was proved to be NP-hard
[4]. This has motivated a lot of interest to pursuit approximate so-
lutions that approach optimal performance at moderate complexity.
SemiDefinite Relaxations (SDR) followed by Gaussian randomiza-
tion (SDR-G) have been extensively studied in the literature to obtain
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good suboptimal solutions [4, 8, 9, 10], with theoretical bound guar-
antees [11, 12]. For a large number of antennas or users, however,
the quality of the approximation obtained by SDR-G methods dete-
riorates considerably. In fact, SDR-based approaches return feasible
points that in general may not be even stationary for the original non-
convex problem. Moreover, in a multi-cell scenario, SDR-G is not
suitable for a distributed implementation across the cells.

Two schemes based on heuristic convex approximations have
been recently proposed in [13] and [14] (the latter based on earli-
er work [15]) for the single-cell multiple-group MMF beamform-
ing problem. While extensive experiments show that these schemes
achieve better solutions than SDR-G approaches, their theoretical
convergence and guarantees remain an open question. Finally, we
are not aware of any distributed scheme with provable convergence
for the multi-cell MMF beamforming problem.

Building on our recent developments [16, 17], in this paper we
fill this gap and propose the first distributed algorithm converging
to d-stationary solutions of the aforementioned MMF beamforming
problems. The algorithmic framework employs a novel convex ap-
proximation technique: the nonsmooth NP-hard problem is replaced
by a sequence of smooth strongly convex subproblems, whereby the
nonconvex SINR constraints are replaced by proper upper convex
approximations; we term it “INner Convex Approximation” (INCA)
algorithm. In a multi-cell scenario, it naturally leads to a distributed
implementation with limited signaling across the base stations (B-
Ss). Numerical results show that our INCA schemes reach better
solutions than SDR-G approaches with high probability, while hav-
ing comparable computational complexity.

The rest of the paper is organized as follows. Sec. 2 introduces
the INCA algorithm in the simplified setting of a single-cell environ-
ment; the multi-cell case along with the distributed implementation
of INCA is studied in Sec. 3. Preliminary numerical results are pre-
sented in Sec. 4, while Sec. 5 draws some conclusions.

2. SINGLE-CELL MULTIGROUP MULTICASTING
Consider a wireless multicast downlink network comprising a single
Base BS, equipped with Nt transmit antennas, and M active users,
which have a single receive antenna. There are K multicast groups,
let Gk denote the k-th group, with k ∈ K , {1, · · · ,K}. Each
receiver listens to a single multicast, implying that G1, · · · ,GK form
a partition of the set of the M users. Denoting by wk ∈ CNt the
beamforming weight vector for transmission to group k, the joint
Max-Min Fair (MMF) beamforming problem reads [4]

maximize
w,(wk)

K
k=1

U(w) , min
k∈K

min
i∈Gk

1

µi

wH
k Hiwk∑

` 6=kw
H
` Hiw` + σ2

i

subject to
∑K
k=1 ‖wk‖22 ≤ P,

(1)

where Hi is a positive semidefinite matrix modeling the channel be-
tween the BS and user i; specifically, Hi = hih

H
i if instantaneous

CSI is assumed, with hi ∈ CNt denoting the frequency-flat quasi-
static channel vector from the BS to user i; and Hi = E(hih

H
i ) rep-

resents the spatial correlation matrix if only long-term CSI is avail-
able (in the latter case, no special structure for Hi is assumed). The
constant 1/µi > 0 is a predetermined factor accounting for possibly
different grades of service; and σ2

i is the variance of the AWGN at
receiver i. We denote by W the (convex) feasible set of (1). We
remark that one can add further (convex) constraints inW , such as
per-antenna power constraints, null or interference constraints; the
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algorithmic framework we are going to introduce is still applicable.
Problem (1) has been proved to be NP-hard [4]. Therefore our

focus is on computing efficiently (d-)stationary solutions of (1).

Definition 1 (d-stationarity) Let U ′(w;d) denote the directional
derivative of U at w , (wk)Kk=1 in the direction d ∈ CNt·K , de-
fined as U ′(w;d) , lim

t↓0
(U(w + td)− U(w)) /t. A tuple w? ,

(w?
k)Kk=1 ∈ W is a d-stationary solution of (1) if

U ′(w?;w −w?) ≤ 0, ∀w ∈ W. (2)

Of course, (local/global) optimal solutions of (1) satisfy (2).
Equivalent reformulation: To compute a stationary solution of the
nonconvex and nonsmooth problem (1), we preliminarily rewrite (1)
in the following equivalent smooth (still nonconvex) form: introduc-
ing the slack variables t ≥ 0, and β , (βi > 0)Mi=1, we have

maximize
t ≥ 0, β, w

t

subject to µi · t · βi −wH
k Hiwk︸ ︷︷ ︸

,gi(t,βi,wk)

≤ 0, ∀i, k

∑
` 6=kw

H
` Hiw` + σ2

i ≤ βi, ∀i, k∑K
k=1 ‖wk‖22 ≤ P.

(3)

We denote by Z the feasible set of (3).
Problems (1) and (3) are equivalent in the following sense.

Proposition 2 Given problems (1) and (3), the following hold:

(a) w? is a d-stationary solution of (1) if and only if there exist t?

and β? , {β?i }Mi=1 such that (t?,β?,w?) is a stationary
solution of (3);

(b) Every stationary solution (t?,β?,w?) of (3) is regular, i.e, the
Mangasarian-Fromovitz Constraint Qualification (see, e.g.,
[18, Sec. 3.2]) is satisfied at (t?,β?,w?).

While the equivalence between (1) and (3) in terms of global
optimal solutions is a well-known fact in the literature, the same re-
sult in terms of stationary solutions is, to the best of our knowledge,
new. It follows from Proposition 2 that one can focus w.l.o.g. on
the smooth reformulation (3). Building on the framework develope-
d in [16], the next section is devoted to the design of an efficient
algorithm for the computation of the stationary solutions of (3).

2.1. Algorithmic design
Problem (3) is nonconvex due to the nonconvex constraint function-
s gi(t, βi,wk). The proposed approach consists then in solving a
sequence of strongly convex approximations of (3) wherein each gi
is replaced by a suitably chosen upper convex surrogate. More for-
mally, denoting by zν , (tν ,βν ,wν) the current iterate, the convex
subproblem at iteration ν ≥ 1 reads

maximize
t ≥ 0, β, w

t− τt
2

(t− tν)2 − τw ‖w −wν‖22 −
τβ
2
‖β − βν‖2

subject to g̃i(t, βi,wk; tν , βνi ,w
ν
k) ≤ 0, ∀i, k,∑

` 6=kw
H
` Hiw` + σ2

i ≤ βi, ∀i, k,∑K
k=1 ‖wk‖22 ≤ P,

(4)
where each g̃i(t, βi,wk; tν , βνi ,w

ν
k), function of (t, βi,wk), is an

upper convex approximation of gi(t, βi,wk) at the current iterate
(tν , βνi ,w

ν
k). In the objective function of (4) we added a proximal

regularization to make it strongly convex; therefore, problem (4) has
a unique solution, which we denote by (t̂ν ,β̂

ν
,ŵν).

On the surrogate functions g̃i: The surrogate functions g̃i need to
be chosen to satisfy some technical conditions (cf. [16, Assumption
3]). Here we recall only the key assumptions (the others are readily
satisfied in practice), namely: g̃i(t, βi,wk; tν , βνi ,w

ν
k) is a convex

global upper bound of gi(t, βi,wk) such that g̃i(t, βi,wk; t, βi,wk)
= gi(t, βi,wk) and ∇1g̃i(t, βi,wk; t, βi,wk) = ∇gi(t, βi,wk),
for all tuples (t, βi,wk) that are feasible for (3), where ∇1g̃i(t, βi,
wk; t, βi,wk) denotes the partial gradient of g̃i with respect to
(t, βi,wk) evaluated at (t, βi,wk; t, βi,wk). The upper bound
conditions guarantee that every solution (t̂ν , β̂

ν
, ŵν) is feasible

for (3), whereas the gradient consistency condition ensures that the
approximations have locally the same first order behavior of the
original functions. Two examples of valid surrogates are given next.

Note that gi(t, βi,wk) is the sum of a bilinear function and a
concave one, namely: gi(t, βi,wk) = gi,1(t, βi) + gi,2(wk), with

gi,1(t, βi) , µi · t · βi, and gi,2(wk) , −wH
k Hiwk. (5)

A valid surrogate g̃i is then obtained as follows: i) one can linearize
gi,2(wk) around wν

k , that is,

g̃i,2 (wk;wν
k) , − (wν

k)H Hiw
ν
k −

〈
∇w∗

k
gi,2 (wν

k) , wk −wν
k

〉
≥ gi,2(wk)

(6)
with ∇w∗

k
gi,2 (wν

k) = Hiw
ν
k and 〈a, b〉 , 2 Re{aHb}; and ii)

upper bound gi,1(t, βi) around (tν , βνi ) 6= (0, 0) as

g̃i,1(t, βi; t
ν , βνi ) ,

µi
2

(
βνi
tν
t2 +

tν

βνi
β2
i

)
≥ gi,1(t, βi). (7)

Overall, this results in the following surrogate function which satis-
fies all the aforementioned conditions (and [16, Assumption 3]):

g̃i(t, βi,wk; tν , βνi ,w
ν
k) , g̃i,1(t, βi; t

ν , βνi ) + g̃i,2 (wk;wν
k) .

(8)
Another example of valid approximation can be readily obtained
using a different bound for the bilinear term gi,1(t, βi) in (5).
Rewriting gi,1(t, βi) as the difference of two convex functions,
gi,1(t, βi) = µi

2
((t + βi)

2 − (t2 + β2
i )), the desired convex upper

bound of gi,1(t, βi) can be obtained by linearizing the concave part
of gi,1(t, βi) around (tν , βνi ) while retaining the convex part, which
leads to

ĝi,1(t, βi; t
ν , βνi ) ,

µi
2

(
(t+ βi)

2 − (tν)2 − (βνi )2
)

−µi (tν (t− tν) + βνi (βi − βνi )) .
(9)

The resulting valid surrogate function is then

g̃i(t, βi,wk; tν , βνi ,w
ν
k) , ĝi,1(t, βi; t

ν , βνi ) + g̃i,2 (wk;wν
k) .
(10)

The INCA Algorithm: The proposed method, described in Algo-
rithm 1, consists in solving the sequence of convexified subproblem-
s (4) [using as surrogate functions g̃i either (8) or (10)], followed
by a step-size procedure. Convergence is established in Theorem 3,
whose proof can be found in [19, Th 10].

Algorithm 1: INCA Algorithm for Problem (1)

Data: γν ∈ (0, 1], z0 , (t0,β0,w0) ∈ Z , with t0 > 0, and
(τt, τw, τβ) > 0. Set ν = 0;
(S.1): If zν , (tν ,βν ,wν) is a stationary solution of (1): STOP;
(S.2): Compute the unique solution ẑν , (t̂ν , β̂

ν
, ŵν) of (4);

(S.3): Update z , (t,β,w): set zν+1 = zν + γν (ẑν − zν);
(S.4): ν ← ν + 1 and go to step (S.1)
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Theorem 3 Let {zν = (tν ,βν ,wν)} be the sequence generated by
Algorithm 1. Choose any τt, τw, τβ > 0 and step-size sequence
{γν} such that γν ∈ (0, 1], γν → 0, and

∑
ν γ

ν = +∞. Then,
{zν} is bounded (with tν > 0, for all ν ≥ 1), and every of its
limit points (t̄, β̄, w̄) is a stationary solution of (3), such that t̄ > 0.
Therefore, w̄ is a d-stationary solution of problem (1). Furthermore,
if the algorithm does not stop after a finite number of steps, none of
the w̄ above is a local minimum of U .

Theorem 3 offers some flexibility in the choice of free parame-
ters (τt, τw, τβ) and {γν}ν , while guaranteeing convergence of Al-
gorithm 1. For instance, many choices are possible for {γν}ν sat-
isfying condition i); a practical rule that we found effective in our
experiments is [20]: γν+1 = γν(1 − εγν), with γ0 ∈ (0, 1] and
ε ∈

(
0, 1/γ0

)
. Also, one can relax the computation of the exact

solution (t̂ν , β̂
ν
, ŵν) of (4) and allow for inexact solutions [20]; we

omit further details because of the space limitation.

3. THE MULTI-CELL CASE
Consider now a multicell multicast system comprising K BSs (cell-
s), each equipped withNt transmit antennas. For notational simplic-
ity, we assume w.l.o.g. that each BS serves a single multicast group
of single antenna users; let Gk denote the group of users served by
the k-th BS, with k ∈ K , {1, · · · ,K}; G1, . . . ,GK is a partition
of K. The extension of the proposed algorithm to the multi-group
case is straightforward. Denoting by wk ∈ CNt the beamform-
ing vector for transmission at BS k, the coordinated multicell MMF
beamforming problem is as follow (see, e.g., [10])

maximize
w,(wk)

K
k=1

min
i∈Gk, k∈K,

wH
k Hk,i,kwk∑

` 6=kw
H
` H`,i,kw` + σ2

i,k

subject to ‖wk‖22 ≤ Pk, ∀k ∈ K,
(11)

where H`,i,k = h`,i,kh
H
`,i,k or E(h`,i,kh

H
`,i,k) � 0 represents the

instantaneous or long-term CSI matrix, respectively, with h`,i,k ∈
CNt denoting the channel vector from the `-th BS to the i-th user in
cell k; σ2

i,k is the variance of the AWGN at the user i in the cell k.
Different QoS among users can be readily accommodated by mulit-
plying each SINR in (11) by a predetermined positive factor, which
we will tacitly assume to be absorbed in the channel matrices Hk,i,k.
Distributed algorithms: In the above multi-cell setting, our goal is
to design distributed algorithms wherein each BS locally computes
its own beamforming vector, with limited signaling among the other
BSs. Following similar steps as in the single-cell case, it is not diffi-
cult to check that one can cast the computation of d-stationary solu-
tions of (11) into the iterative solution of the following sequence of
strongly convex subproblems: given the current iterate (tν ,βν ,wν),
with βν , ((βi,k)i∈Gk )k∈K > 0, w , (wk)k∈K, and tν 6= 0,

maximize
t≥0,β, {wk}Kk=1

,
t− τt

2
(t− tν)2− τw ‖w −wν‖22 −

τβ
2
‖β − βν‖2

subject to (a): g̃i,k(t, βi,k,wk; tν , βνi,k,w
ν
k) ≤ 0, ∀i, k,

(b):
∑
6̀=kw

H
` H`,i,kw` + σ2

i,k ≤ βi,k, ∀i, k,
‖wk‖22 ≤ Pk, ∀k ∈ K, (12)

where the surrogate functions g̃i,k are chosen as [cf. (8)]

g̃i,k
(
t, βi,k,wi; t

ν , βνi,k,w
ν
i

)
,

1

2

(
βνi,k
tν

t2 +
tν

βνi,k
β2
i,k

)
− (wν

k)H Hk,i,kw
ν
k − 〈Hk,i,kw

ν
k ,wk −wν

k〉 .

We denote by ẑν , (t̂ν , β̂
ν
, ŵν) the unique solution of (12).

Using (12), we can readily apply Algorithm 1, where ẑν in Step 3

is now interpreted as the unique solution of (12); convergence to d-
stationary solutions of (11) is still guaranteed under Theorem 3.

The above algorithm is however centralized, because the sub-
problems (12) do not decouple across the BSs. A distributed solution
method for (12) can be obtained, exploiting the additive separabil-
ity in the BSs’ variables of the objective function and constraints
in (12), as outlined next. Denoting by λ , ((λi,k)i∈Gk )k∈K and
µ , ((µi,k)i∈Gk )k∈K the multipliers associated to the constraints
(a) and (b) in (12), respectively, σ2 , ((σ2

i,k)i∈Gk )k∈K, and giv-
en (tν ,βν ,wν), the (partial) Lagrangian of (12) can be shown to
have the following structure: Lν (t, β,w,λ,µ) = Lν(1) (t,λ,µ) +∑K
k=1 L

ν
(2) (wk,λ,µ) +

∑K
k=1 L

ν
(3) (βk,λ,µ), where

Lν(1) (t,λ,µ) , −t+ τt
2

(t− tν)2 + λTβν

2tν
t2 + µTσ2;

Lν(2) (wk,λ,µ) , τw‖wk −wν
k‖2 −

∑
i∈Gk

λi,k (wν
k)H Hk,i,kw

ν
k

+
∑
i∈Gk

[∑
` 6=k µi,`w

H
k Hk,i,`wk − λi,k 〈Hk,i,kw

ν
k ,wk −wν

k〉
]

;

Lν(3) (βk,λ,µ) ,
τβ
2
‖βk − βνk‖2 − µTk βk +

∑
i∈Gk

λi,k t
ν

2βν
i,k

β2
i,k.

The above structure of the Lagrangian leads naturally to the follow-
ing decomposition of the dual function

Dν (λ,µ) = min
t≥0
Lν(1) (t,λ,µ; tν)

+
∑
k∈K

min
‖wk‖22≤Pk

Lν(2) (wk,λ,µ) +
∑
k∈K

min
βk≥0

Lν(3) (βk,λ,µ) .

The unique solutions of the above optimization problems can be
computed in closed form:

t̂ν (λ) , argmin
t≥0

Lν(1) (t,λ,µ) =

[
1 + τt · tν

τt + λTβν/tν

]
+

,

β̂
ν

k (λ,µ) , argmin
βk≥0

Lν(3) (βk,λ,µ)

=

([
τβ · βνi,k + µi,k

τβ + λi,k · tν/βνi,k

]
+

)
i∈Gk

,

ŵν
k (λ,µ, ξ?k) , argmin

‖wk‖22≤Pk
Lν(2) (wk,λ,µ) = (ξ?kI + Ak)−1bνk,

(13)
where [x]+ , max(0, x); Ak , τwI +

∑
i∈Gk

∑
` 6=k µi,`Hk,i,`;

bνk ,
(
τwI +

∑
i∈Gk

λi,kHk,i,k

)
wν
k ; and ξ?k , which is such

that 0 ≤ ξ?k ⊥ ‖ŵν
k (λ,µ, ξ?k) ‖2 − Pk ≤ 0, can be com-

puted as follows. Denoting by UkDkU
H
k the eigendecompo-

sition of Ak, we have fk(ξk) , ‖ŵν
k (λ,µ, ξk) ‖2 − Pk =∑Nt

j=1

[UHk bνkb
νH
k Uk]jj

(ξk+[Dk]jj)
2 − Pk. Therefore, ξ?k = 0 if fk(0) < 0;

otherwise ξ?k is such that fk(ξ?k) = 0, which can be computed using
bisection on [0,

√
tr(UH

k bνkb
νH
k Uk)/Pk −min

j
[Dk]jj ].

Finally, note that the dual function Dν (λ,µ) is differentiable
with gradient given by: denoting zν , (tν ,βν ,wν),

∇λi,kD
ν (λ,µ) = g̃i,k

(
t̂ν (λ) , β̂ν (λ,µ) , ŵν

k (λ,µ, ξ?k) ; zν
)
,

∇µi,kD
ν (λ,µ) =

∑
` 6=k

ŵν
` (λ,µ, ξ?k)H H`,i,kŵ

ν
` (λ,µ, ξ?k)

+σ2
i,k − β̂νi,k (λ,µ) , (14)

for all i ∈ Gk and k ∈ K. Using (14), the dual problem
maxλ,µ≥0D

ν (λ,µ) can be then solved in a distributed way with
convergence guarantee using, e.g., the gradient (or Newton) scheme
with diminishing step-size; we omit further details.
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The distributed algorithm is a double loop scheme: the inner
loop deals with the update of the multipliers (λ,µ), given zν ,
(tν ,βν ,wν); whereas the outer loop consists in updating zν via

zν+1 = zν+γν (ẑν − zν) wherein ẑν ,
(
t̂ν(λ∞), β̂ν(λ∞,µ∞),

ŵν(λ∞,µ∞)), with (λ∞,µ∞) denoting the solution from the in-
ner loop. The inner and outer updates can be performed in a fairly
distributed way among the cells. More specifically, let {(λn,µn)}
denote the sequence generated by solving the dual problem; given
(λn,µn), the BSs can compute ŵν

k(λn,µn) and β̂νk(λn,µn) in
parallel [cf. (13)]; to do so, they need only local information (within
the cell). The update of t̂ν(λn) and the multipliers

(
λn+1,µn+1

)
require some coordination among the BSs: it can be either carried
out by a BS header or locally by all the BSs if a consensus-like
scheme is employed.

4. NUMERICAL RESULTS

In this section, we present some numerical results validating the pro-
posed approach and algorithmic framework. We compare our IN-
CA algorithm with the renowned SDR-G scheme in [4]. For IN-
CA, we considered two instances, corresponding to the two alterna-
tive approximation strategies (7) and (9); we will term them “IN-
CA1” and “INCA2”, respectively. The setup of our experiment is
the following. We simulated a single BS system; the transmitter is
equipped with Nt = 8 transmit antennas and serves K = 2 mul-
ticast groups, each with Ik , I single-antenna users, ∀k ∈ K. D-
ifferent numbers of users per group are considered, namely: I =
12, 24, 30, 50, 100. The proposed INCA algorithms are simulated
using the step-size rule γν = γν−1

(
1− εγν−1

)
[16], with γ0 = 1,

where ε = 10−2; the proximal gain is set to τ = 10−5. The it-
erate is terminated when the absolute value of the difference of the
objective function in two consecutive iterations is less than 10−3.
For the SDR-G in [4], 300 Gaussian samples are taken during the
randomization phase, where the principal component of the relaxed
SDP solution is also included as a candidate; the best value of the
resulting objective function is denoted by tSDR. To be fair, for the
proposed INCA schemes, we considered 300 random feasible start-
ing points and kept the best value of the objective function at con-
vergence, denoted by tINCA. We then compared the performance of
the two algorithms in terms of the ratio tINCA/tSDR. As benchmark,
we also report the results achieved using the standard nonlinear pro-
gramming solver in Matlab, specifically the active-set algorithm in
’fmincon’; we refer to it as “AS” algorithm and denote by tAS the
best value of the objective function at convergence (obtained over
the same random initializations of the INCA schemes). In Fig. 1 a)
we plot the probability that tINCA/AS/tSDR ≥ α versus α, for different
values of I (number of users per group), and SNR , P/σ2 = 3dB;
this probability is estimated taking 300 independent channel real-
izations. The figures show a significant gain of the proposed INCA
methods. For instance, when I = 30, the minimum achieved SIN-
R of all INCA methods is about at least three times and at most 5
times the one achieved by SDR-G, with probability one. It seem-
s that the gap tends to grow in favor of the INCA methods, as the
number of users increases. In Fig. 1 b) we plot the distribution of
tINCA/AS/tSDR. For instance, when I = 30, the minimum achieved
SINR of all INCA methods is on average about four times the one
achieved by SDR-G; the variance is about 1.

We observe that, while the proposed schemes compare favor-
ably with the commercial off-the-shelf software (in terms of quality
of the solution and convergence speed), they allow for a distributed
implementation in a multi-cell scenario with convergence guaran-
tees; off-the-shelf softwares instead lacks this important feature. In
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Fig. 1. (a):Prob(tINCA/AS/tSDR ≥ α) versus α, for I =

12, 21, 30, 50, 100; (b): Estimated p.d.f. of tINCA/AS/tSDR.

Fig. 2, we compare the (second-order) distributed implementation of
INCA (cf. Sec. 3) with the centralized one. We simulated a system
composed ofK = 4 BSs, each of them equipped withNt = 4 trans-
mit antennas and serving one multicast group. Each group has I = 3
single-antenna users. In both loops (inner and outer), the iterate is
terminated when the absolute value of the difference of the objec-
tive function in two consecutive iterations is less than 10−2. Fig. 2
shows the evolution of the objective function t versus the iterations.
For the distributed algorithm, the number of iterations counts both
the inner and outer iterations. The algorithms converge quite fast to
the same stationary point of (11).
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Fig. 2. Minimum rate vs. iterations.

5. CONCLUSIONS
We proposed the INCA algorithm, a new algorithmic framework for
the distributed computation of d-stationary solutions of the multi-
cell MMF multicast beamforming, with convergence guarantees. To
the best of our knowledge, this is the first provable distributed algo-
rithm for this class of problems. Numerical results show that our IN-
CA schemes reach better solutions than renowned SDP relaxation-
based approaches with high probability, while having similar com-
putational complexity.
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