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ABSTRACT

We consider stochastic optimization problems in multi-agent settings,
where a network of agents aims to learn decision variables which are
optimal in terms of a global objective, while giving preference to lo-
cally and sequentially observed information. To do so, we formulate a
problem where each agent minimizes a global objective while enforcing
network proximity constraints, which includes consensus optimization
as a special case. We propose a stochastic variant of the saddle point
algorithm proposed by Arrow and Hurwicz to solve it, which yields a
decentralized algorithm that is shown to asymptotically converge to a
primal-dual optimal pair of the problem in expectation when a dimin-
ishing algorithm step-size is chosen. Moreover, the algorithm converges
linearly to a neighborhood when a constant step-size is chosen. We ap-
ply this method to the problem of sequentially estimating a correlated
random field in a sensor network, which corroborates these performance
guarantees.

1. INTRODUCTION

We consider online multi-agent optimization problems, where a group
of interconnected agents aim to minimize a global objective f =

∑
i fi

which may be written as a sum of local objectives fi available at differ-
ent nodes i of a network G = (V, E). The problem is online because
information upon which the local objectives depend is sequentially and
locally received by each agent. We consider the setting where agents
aim to keep their decision variables close to one another but not coin-
cide in order to minimize this global objective while giving preference
to possibly distinct local signals.

Prior approaches to this problem require each agent to keep a lo-
cal copy of the global decision variable, and approximately enforce an
agreement constraint between the local copies at each iteration. To do
so, various information mixing strategies among the nodes have been
proposed in which agents combine local gradient steps with a weighted
average of their neighbors variables [1–3], dual reformulations where
each agent ascends in the dual domain [4, 5], and primal-dual methods
which combine primal descent with dual ascent [6–11]. Stochastic ap-
proximation methods have successfully generalized these methods to
the online setting [2, 12–14].

In distributed optimization problems, agent agreement may not
always be the primary goal. In large-scale settings where one aims
to leverage parallel processing architectures to alleviate computational
bottlenecks, agreement constraints are suitable. In contrast, if there are
different priors on information received at distinct subsets of agents,
then requiring the network to reach a common decision may to degrade
local predictive accuracy. Moreover, there are tradeoffs in complexity
and communications, and it may be that only a subset of nodes requires
a solution. In this paper, we seek to solve problems in which each agent
aims to minimize a global cost

∑
i fi subject to a network proximity

constraint, which allows agents the leeway to select actions which are
good with respect to a global cost while not ignoring the structure of
locally observed information. We propose a stochastic saddle point
method [6, 7] to solve online multi-agent optimization problems with
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network proximity constraints. Moreover, we establish that this algo-
rithm converges in expectation to a primal-dual optimal pair of this
problem when a diminishing step-size is used, and to a neighborhood
of the saddle point of the Lagrangian when a constant step-size is used
(Section 4). All proofs are given in [15]. Numerical analysis on a
spatially correlated sequential estimation problem in a sensor network
demonstrates the proposed method’s practical utility (Section 5).

2. PROBLEM FORMULATION

Begin by considering agents i of a symmetric and connected network
G = (V, E) with |V | = N nodes and |E| = M edges and denote as
ni := {j : (i, j) ∈ E} the neighborhood of agent i. Each of the agents
is associated with a convex loss function fi : Xi × Θi → R that is
parameterized by a decision variable xi ∈ Xi ⊂ Rp and a random
variable θi ∈ Θi with a proper distribution. Throughout, we assume
Xi to be compact and convex and the functions fi(xi,θi) to be m-
strongly convex in xi for almost all given θi. The functions fi(xi,θi)
for different θi are interpreted as observations of a stochastic model
with a possible goal for agent i being the computation of the optimal
local estimate,

xL
i := argmin

xi∈X
Fi(xi) := argmin

xi∈X
Eθi [fi(xi,θi)] . (1)

In the online settings considered here the functions fi(xi,θi) are
termed instantaneous because they are observed at particular points in
time; see Section 3. Moreover, Fi(xi) is said to be an average function.

When we consider the network as a whole we can define the stacked
vector x = [x1, . . . ,xN ], the product set X = X1×, . . .×XN , and the
aggregate function F (x) =

∑N
i=1 Eθi [fi(xi,θi)]. It then follows that

the set of problems in (2) is equivalent to the aggregate problem

xL = argmin
x∈X

F (x) := argmin
xi∈Xi

N∑
i=1

Eθi [fi(xi,θi)] . (2)

That (1) and (2) describe the same problem is true because there is no
coupling between the variables xi at different agents. In many situa-
tions, however, the parameters xL

i that different agents want to estimate
are related. It then makes sense to couple decisions of different agents
as a means of letting agents exploit each others’ observations. Con-
sensus optimization problems work on the hypothesis that all agents
observe the same parameter and modify (2) by introducing consensus
constraints of the form

xi = xj , for all j ∈ ni . (3)

For a connected network this constraint makes all variables xi equal –
hence the definition as a consensus problem. This is overly restrictive,
however. In general, parameters of nearby nodes are expected to be
close but are not necessarily all equal, as is the situation in, e.g., the
estimation of a smooth field that is albeit not uniform. To model this
situation we introduce a convex local proximity function of the form
hi(xi,xj) and a tolerance γij . These are used to couple the decisions
of agent i to those of its neighbors j ∈ ni through the definition of
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the optimal estimates as the solution of the constrained optimization
problem

x∗ := argmin
x∈XN

N∑
i=1

Eθi [fi(xi,θi)]

s.t. hi(xi,xj) ≤ γij , for all j ∈ ni. (4)

The consensus constraints in (3) are a particular example of a proximity
function hi(xi,xj) but so is the norm constraint ‖xi − xj‖ ≤ γij .
This latter choice makes the estimates x∗i and x∗j of neighboring nodes
close to each other but not equal. Implicitly, this allows i to incorporate
the (relevant) information of neighboring nodes without the detrimental
effect of trying to incorporate the information of far away nodes that is
only weakly correlated with the parameter that i tries to estimate. An
important observation here is that the workhorse distributed gradient
descent [1–3] and dual decomposition methods [4, 5] can’t be used to
solve (4) because they require the constraints hi(xi,xj) to be linear.

The goal of this paper is to solve (4) in distributed online settings
where nodes don’t know the distribution of the random variable θi but
observe local instantaneous functions fi(xi,θi) sequentially. Before
developing this algorithm, we discuss a representative example to clar-
ify ideas.

Example 1 (LMMSE Estimation of a Random Field) Consider a
sequential estimation problem in a sensor network, where observations
θi,t ∈ Rq of a Gauss-Markov Random Field are collected by agent
i at time t. Observations at node i are noisy linear transformations
θi,t = Hixi + wi,t of a signal xi ∈ Rp contaminated with Gaussian
noise wi,t ∼ N (0, σ2I) independently distributed across nodes and
time. The random field couples the variables xi of different nodes. We
capture this correlation with a covariance matrix Rx whose elements
are assumed to decay with the distance between sensors i and j. If
the communication graph between sensors is also assumed to be given
by proximity, this means that estimates of neighboring nodes are more
strongly correlated than estimates of nonadjacent agents.

Ignoring neighboring observations, the minimum mean square error
local estimation problem at node i can then be written in the form of (1)
with fi(xi,θi) = ‖Hixi−θi‖2. The quality of these estimates can be
improved using the correlated information of adjacent nodes but would
be hurt by trying to make estimates uniformly equal across the network.
The mathematical formulation

x∗ := argmin
x∈XN

N∑
i=1

Eθi

[
‖Hi,txi − θi,t‖2

]
s.t. (1/2)‖xi − xj‖2 ≤ γij , for all j ∈ ni. (5)

captures this specification as it makes the estimate x∗i of node i close
to the estimates x∗j of neighboring nodes j ∈ ni but not so close to the
estimates x∗k of nonadjacent nodes k /∈ ni.

3. ALGORITHM DEVELOPMENT

Our goal is to solve (4) in a decentralized online manner. One way to
achieve this would be to solve it by enforcing the constraints exactly,
but doing so would require global coordination. Instead, we consider
the Lagrangian relaxation of (4), stated as

L(x,λ) =

N∑
i=1

Eθi [fi(xi,θi)]+
1

2

N∑
i=1

∑
j∈ni

λij (h(xi,xj)−γij) (6)

We propose applying a stochastic saddle point algorithm to (6) which
operates by alternating primal and dual stochastic gradient descent and

ascent steps respectively [6]. To do so, consider the stochastic approxi-
mation of the Lagrangian evaluated at observed realizations θi,t of the
random variables θi, which we define as

L̂t(x,λ) =

N∑
i=1

fi(xi,θi,t)+
1

2

N∑
i=1

∑
j∈ni

λij (h(xi,xj)−γij) (7)

We allow for the case that the proximity constants γij = γij,t are time-
varying as well, and selected according to some distributional inference
on θi.

Define the stacked primal and dual variables respectively as x :=
[x1; · · · ; xN ] ∈ RNp and λ := [λ1; · · · ;λM ] ∈ RMp. Moreover,
denote the network aggregate random variable as θ = [θ1; · · · ;θN ].
Particularized to the stochastic Lagrangian stated in (7), the stochastic
saddle point method takes the form

xt+1 = PX
[
xt − εt∇xL̂(xt,λt)

]
, (8)

λt+1 = PΛ

[
λt + εt∇λL̂(xt+1,λt)

]
, (9)

where∇xL̂(xt,λt) and∇λL̂(xt,λt), are the primal and dual stochas-
tic gradients of the Lagrangian with respect to x and λ, respectively.
These stochastic subgradients are approximations of the gradients of
(6) evaluated at the current realization of the random variable θ. The
notation PΛ(λ) denotes projection of dual variables on a given con-
vex compact set Λ, which we assume be written as a Cartesian prod-
uct of sets Λij so that the projection of λ into Λ is equivalent to the
separate projection of the components λij into the sets Λij . The nota-
tion PX (x) denotes projection onto the set of feasible primal variables
X = X1×, . . .×XN .

The method stated in (8) - (9) yields an effective tool for decen-
tralized computation across the network, as we state in the following
proposition.

Proposition 1 The gradient computations in (8)-(9) may be separated
along the local primal variables xi,t associated with node i, yielding
N parallel updates

xi,t+1 = PXi

[
xi,t − εt

(
∇xifi(xi,t;θi,t) (10)

+
∑
j∈ni

λTij,t∇xihi(xi,t,xj,t)
)]

,

Moreover, the dual gradients in the update of λij,t in (9) may be sepa-
rated into M parallel updates associated with edge (i, j)

λij,t+1 = PΛ

[
λij,t + εt (hi(xi,t+1,xj,t+1)− γij)

]
. (11)

which allows for distributed computation across the network.

Proof: See [15], Appendix A. �

Proposition 1 states that the saddle point method requires that in-
dividuals only coordinate their decision variables with their neighbors,
and hence may be implemented in a distributed manner. Observe that
the constraint functions hi may be selected as any convex function of
the decision variables of node i and its neighbors j ∈ ni. Moreover,
the dual variable ascends along the local constraint slack given by the
network proximity of node i to its neighbors j ∈ ni. For the case pre-
sented in Example 1 with quadratic constraints (1/2)‖xi−xj‖2 ≤ γij ,
the update in (10) take the form

xi,t+1 = PXi

[
xi,t − ε

(
2HT

i,t

(
Hi,txi,t − θi,t

)
+
∑
j∈ni

λij,t
(
xi,t − xj,t

)]
. (12)
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Moreover, the dual update which ascends along the constraint violation,
for the quadratic constraint case, may be stated as

λij,t+1 = PΛ

[
λij,t + εt

(
(1/2)‖xi,t+1 − xj,t+1‖2 − γij

) ]
. (13)

The factorization properties of the Lagrangian [cf. (6)] allow for
distributed computation, from which new decentralized estimation
schemes may be derived, as with the updates in (12) - (13).

4. CONVERGENCE ANALYSIS

We turn to establishing that the saddle point algorithm in (8)-(9) asymp-
totically converges to a saddle point of the Lagrangian [cf. (6)], which
implies that we solve the problem stated in (4) in a decentralized online
manner. The analysis is done and the results are stated in terms of pro-
jected gradients. Consider then the feasible primal set X and define the
projected primal stochastic gradient of the Lagrangian onto the set X as

PX [∇xL̂(xt,λt)] =

{
∇xL̂(xt,λt) if∇xL̂(xt,λt) ∈ X ◦

∇xL̂(xt,λt)
‖ if∇xL̂(xt,λt) ∈ ∂X .

(14)

where ∇xL̂(xt,λt)
‖ denotes the component of the vector parallel to

the set X , whose interiors and boundaries are denoted as X ◦ and ∂X
respectively. The projected dual stochastic gradient PΛ[∇λL̂(xt,λt)]
is similarly defined.

In order to obtain convergence results, some conditions are required
of the network, data distribution, loss functions, and stochastic approx-
imation errors which we state below.

(A1) The Lagrangian has Lipschitz gradients in the primal and dual
variables, i.e. the following holds

‖∇xL(x,λ)−∇xL(x̃,λ)‖ ≤ Lx‖x− x̃‖ . (15)

‖∇λL(x,λ)−∇λL(x, λ̃)‖ ≤ Lλ‖λ− λ̃‖ . (16)

for distinct primal and dual variables x 6= x̃, λ 6= λ̃.
(A2) The gradients of the Lagrangian are bounded as

‖∇xL(x,λ)‖ ≤ Gx , ‖∇λL(x,λ)‖ ≤ Gλ . (17)

(A3) There exists a constant A so that for all times t the norm of the
difference between descent (respectively, ascent) along stochastic
gradients followed by set projections and descent (ascent) along
projected stochastic gradients are almost surely bounded by Aε2t ,
i.e. ∥∥∥(xt+1 − xt)− εtPX [∇xL̂(xt,λt)]

∥∥∥ ≤ Aε2t (18)∥∥∥(λt+1 − λt)− εtPΛ[∇λL̂(xt,λt)]
∥∥∥ ≤ Aε2t (19)

(A4) The projected primal and dual stochastic gradients of the La-
grangian are unbiased estimators of the projected gradients of the
Lagrangian, i.e.

E
[
PX [∇xL̂t(xt,Λt)]

]
= PX [∇xL(xt,Λt)] , (20)

E
[
PΛ[∇λL̂t(xt,Λt)]

]
= PΛ[∇λL(xt,Λt)] . (21)

The second moments of the stochastic gradients conditional on
Ft, a sigma algebra that measures the history of the system up
until time t, are bounded by S2

x for all times t, which allows us to
write

max{E[‖∇xL̂t(xt,λt)‖2
∣∣Ft],

E[‖∇λL̂t(xt,λt)‖2
∣∣Ft]} ≤ S2

x. (22)

Assumption 1 requires the gradients to be uniformly well behaved
and Assumption 2 requires them to be bounded. Since the primal and
dual domains X and Λ are compact, both of these assumptions are
valid in most practical situations. The condition in Assumption 3 is
a technical condition which permits analyzing the algorithm in terms of
projected stochastic gradients rather than an analysis that uses regular
(non-projected) gradients followed by set projections. This technical
assumption is not restrictive either. It just means that the difference
between applying a projected gradient and applying a regular gradient
followed by projection scales with the stepsize. The bias and variance
conditions in (22) of Assumption 4 is standard in stochastic optimiza-
tion literature and valid in all but pathological cases.

With these conditions in place, we are ready to study the conver-
gence properties of the algorithm stated in (8) - (9). We first consider the
case where the algorithm step-size εt is diminishing, i.e. εt = O(1/t),
which implies

(i)
∞∑
t=0

εt =∞ and (ii)
∞∑
t=0

ε2t <∞ (23)

When the algorithm step-size satisfies (23), the saddle point iterates
converge in expectation to a primal-dual optimal pair of (4).

Theorem 1 Denote (xt,λt) as the sequence generated by the saddle
point algorithm in (8)-(9). Suppose Assumptions 1 - 4 hold and the
step-size εt = O(1/t), then (xt,λt) asymptotically converges in ex-
pectation to a KKT point of the problem as

lim
t→∞

E[‖PX [∇xL(xt,λt)]‖] = 0 , (24)

lim
t→∞

E[‖PΛ[∇λL(xt,λt)]‖] = 0 . (25)

Proof: See [15], Section IV. �

Theorem 1 guarantees that the saddle point algorithm stated in (8)
- (9) asymptotically converges in expectation to a primal-dual optimal
pair of the problem stated in (4) when a diminishing step-size εt =
O(1/t) is used. As a consequence, individuals in the network success-
fully learn global information while satisfying the network proximity
constraint on average. Instead, if we select a constant step-size εt = ε
then the algorithm in (8) and (9) converges asymptotically to a neighbor-
hood of the optimal. Moreover, with a suitably small constant step-size,
the convergence rate is linear, as we state next.

Theorem 2 Denote (xt,λt) as the sequence generated by the saddle
point algorithm in (8) and (9) with constant step-size εt = ε < 1/(2m).
Let (x∗,λ∗) ∈ X ∗ ×Λ∗ be a primal-dual optimal pair of the problem
stated in (4). If Assumptions 1 - 4 hold, the Lagrangian L(xt,λt) con-
verges to a neighborhood of the saddle point L(x∗,λ∗) as

lim inf
t→∞

|L(xt,λt)− L(x∗,λ∗)| ≤ εS2
xLλ + 2G2

λ

4m
. (26)

Moreover, the absolute error sequence of the Lagrangian L(xt,λt) −
L(x∗,λ∗) converges linearly to a neighborhood

E[|L(xt,λt)− L(x∗,λ∗)|]
≤ (1− 2mε)t|L(x0,λ0)− L(x∗,λ∗)|

+
εS2
xLx + 2G2

λ

4m
. (27)

Proof: See [15], Section IV. �

Theorem 2 guarantees that the saddle point method as stated in (8)
and (9) converge linearly to a neighborhood of the Lagrangian evalu-
ated at a primal-dual optimal pair. The constant (εLxS

2
x + 2G2

λ)/4m
is dominated by the constant Gλ which represents the worst-case con-
straint slack. If we replace xt by its time average x̄t = (1/t)

∑t
u=1 xt,

this quantity asymptotically behaves as O(ε2) in deterministic settings,
as is established in Proposition 5.1 (a) in [7].
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Fig. 1: Saddle point algorithm applied to the problem of estimating a correlated random field. Nodes are deployed uniformly in a square region of
size 200×200 squared meters in a grid formation, and node estimators are correlated according to the distance-based model ρ(xi,xj) = e−‖li−lj‖,
where xi and xj are the decisions of nodes i and j, and lj are their respective locations. Individual sensors learn global information while remaining
close to nodes whose information they deem important. Exploiting the correlation structure of the field yields a reduction in the local estimation
error and distance to the optimal LMMSE estimate.

5. NUMERICAL ANALYSIS

Consider the task of estimating a spatially correlated random field in a
specified region A by making use of a sensor network. Interconnected
sensors collect observations θi,t which are noisy linear transformations
of the signal x they would like to estimate, which are related through
the observation model θit = Hix + wi,t with Gaussian noise wi,t ∼
N (0, σ2Iq) i.i.d across time and node with σ2 = 2 , as in Example
1. The random field is parameterized by the correlation matrix Rx,
which is assumed to follow a spatial correlation structure of the form
ρ(xi,xj) = e−‖li−lj‖, where li and lj are the respective locations of
sensor i and sensor j in the deployed region, see, e.g., [16]. Observe
that now each node has a unique signal-to-noise ratio based upon its
location and that information received at more distant nodes are less
important; however, their contribution to the aggregate objective F (x)
still incentivizes global coordination.

To solve this problem, we deployN = 50 sensors in a grid formula-
tion, where neighboring nodes have a constant apart from one another in
a 1000×1000 meter square region. We make use of the saddle point al-
gorithm [cf. (10) - (11)], whose updates for the random field estimation
problem is given by the explicit expressions in (12) and (13), respec-
tively. We select γij = ρ(xi,xj). Besides the local and global losses
which on average asymptotically converge to their constrained minima
in the diminishing step-size regime (Theorem 1) and to a neighborhood
of the optima in the constant step-size case (Theorem 2), we also study
the standard error to the LMSE estimator x∗, i.e. ‖xi,t − x∗‖.

To compute x∗ for a single time slot, stack observations θ =
[θ1; · · · ;θN ] and observation models H = [H1; · · · ; HN ]. Then
the least mean squared error (LMSE) estimator for a single time slot
of this problem is x∗ = (HRxH

T + 1
σ2 I)−1 1

σ2 Iθ. To compute the
benchmark LMSE x∗ for a given run, we stack signals θi,t for all nodes
i and times t at a centralized location into one large linear system and
substitute the sample variance σ̂2 in the prior computation.

We consider problem instances where observations and signal esti-
mates are scalar (p = q = 1), the scalar H = 1, and the a priori signal
x = 1 is set a vector of ones, and run the algorithm for for T = 500
iterations with a hybrid step-size strategy which is constant for the first
t0 iterations and then attenuates, i.e. ε1 = min(ε, εt0/t) with t0 = 100
and ε = 10−2. The noise level is set to σ2 = 10. We compare the
performance of the algorithm with that of a simple LMMSE estimator
strategy which does not take advantage of the correlation structure of
the sensor network.

In Figure 1, we plot the results of this numerical estimation ex-

periment. Figure 1a shows the local objective Eθi [fi(xi,t,θi)] of an
arbitrarily chosen node i ∈ V versus iteration t. We observe the nu-
merical behavior of the local objective is similar to the global objective,
and is thus omitted. We see that when nodes incorporate the correla-
tion structure of the random field into their estimation strategy via the
quadratic proximity constraint with γij chosen according to the corre-
lation of node i and its neighbors j ∈ ni, the estimation performance
improves. In particular, to achieve the benchmark Eθi [fi(xi,θi)] ≤ .1,
we require t = 247 versus t = 411 iterations respectively for the case
that the correlation structure is exploited via the saddle point algorithm
as compared with a simple LMMSE scheme. We observe that for small
t the gain is substantial, but for large t the performance is comparable
to the LMMSE strategy.

This improved estimation performance is corroborated in the plot
of the standard error ‖xi,t − x∗‖ to the optimal estimator as compared
with iteration t in Figure 1b. We see that to achieve the benchmark
‖xi,t − x∗‖ ≤ .1, the saddle point algorithm requires t = 157 itera-
tions as compared with t = 414 for the LMMSE estimator, more than
twice as many. We have observed that the benefit of using the saddle
point method as compared with simple LMMSE is more substantial in
problem instances where the signal to noise ratio is low, and the region
A is larger.

6. CONCLUSION

We formulated online multi-agent optimization problems with network
proximity constraints as a generalization of online consensus optimiza-
tion, and consider the saddle point method of Arrow and Hurwicz to
solve it. We establish this algorithm converges in expectation both in
the diminishing and constant algorithm step-size regimes in Theorems
1 - 2, respectively. The flexibility afforded by the saddle point algo-
rithm allows individual nodes in the network to give preference to lo-
cally observed information and consider more general agreement con-
straints which may take advantage of correlation structures in their de-
cision variables.

As an application, we considered a random field estimation problem
where the estimators of individual sensors follow a spatial correlation
pattern. The saddle point method for this task provides a framework
for nodes to incorporate priors on the importance of their neighbors’
decisions for their local estimates via proximity constraints based on
their correlations. In doing so, we observe empirical performance gains
over a simple LMMSE estimator.
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