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Abstract—Communication signals are often cyclostationary, that is
they have statistical characteristics that vary periodically in time. The
cyclic spectrum, a characteristic function of such signals, exhibits spectral
peaks at certain locations, called cyclic frequencies. These locations as
well as the cyclic spectrum support are defined by the signal parameters,
in particular carrier frequency, bandwidth and symbol rate. In this
paper, we propose an estimation algorithm that extracts these from
the signal cyclic spectrum. This algorithm can be applied to multiband
signals, namely signals composed of more than one transmission. Prior to
parameter estimation, the number of signals is first estimated. Exploiting
the cyclostationarity of communication signals improves the robustness to
noise of the parameter estimation. In particular, the proposed algorithm
can be used for Cognitive Radios, which traditionally deal with low signal
to noise ratios multiband signals, for spectrum sensing purposes by esti-
mating the carrier frequencies and bandwidths. Simulations demonstrate
estimation from synthesized and RF Nyquist samples as well as sub-
Nyquist samples.

I. INTRODUCTION

Recently, the traditional and popular signal detection task has
been challenged by Cognitive Radio (CR) [1] applications, perceived
as a potential solution to the spectrum over-crowdedness, bridging
between its scarcity and sparsity. Even though most of the spectrum
is already owned, various studies [2], [3] have shown that it is
usually significantly underutilized. CRs would allow secondary users
to opportunistically use the licensed spectrum when the corresponding
primary user (PU) is not active [1]. CR requirements dictate new
challenges for its most crucial task: spectrum sensing has to be robust
to noise and performed efficiently and in real-time. A CR typically
deals with a wideband signal composed of several narrowband trans-
missions, which is referred to as a multiband model.

Energy detection fails to meet the performance requirements of
CRs, which typically deal with low signal to noise ratio (SNR)
regimes. Modeling communication signals as cyclostationary rather
than as stationary processes can noticeably improve the detection
performance since noise is traditionally stationary [4]. Cyclostation-
ary processes have statistical characteristics that vary periodically,
arising from the underlying data modulation mechanisms, such as
carrier modulation, periodic keying or pulse modulation. The cyclic
spectrum, a characteristic function of such processes, exhibits spectral
peaks at certain frequency locations called cyclic frequencies, which
are determined by the signal parameters, particularly the carrier
frequency and symbol rate [4].

In this work, we consider the estimation of the carrier frequencies
and bandwidths of each transmission of the multiband input signal
from its cyclic spectrum. In particular, this allows us to determine
the signal support for spectrum sensing purposes. Cyclostationarity
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has been researched extensively [5]. Traditionally, classification al-
gorithms involve learning with a training phase and detection tech-
niques simply compare the cyclic spectrum or cyclic autocorrelation
functions to a certain threshold. Our detector, however, is designed
to obey certain requirements: (1) carrier frequency and bandwidth
estimation rather than simple signal detection; (2) blind detection,
namely without knowledge of the carrier frequencies, bandwidths
and symbol rates of the transmissions; (3) simultaneous detection of
several transmissions; (4) non-learning approach, i.e. with no training
phase, for CR purposes.

Single cycle detectors [6], [7], [8] compute the cyclic spectrum
at one particular cyclic frequency, a priori known. Dropping the
requirement of a priori knowledge of the cyclic frequency of interest,
this last approach is extended to the detection of one cyclic frequency
that lies on a predefined grid, in [9]. Cyclostationarity induced by the
symbol rate alone is considered. The approach of [8] is also extended
to multiples cyclic frequencies in [10]. However, only decisions about
the presence of a single transmission is allowed, which does not
fit the multiband model. In [11], the authors extend cyclostationary
detection to the multiband case, by dividing the wideband channel
into predefined narrow subbands. They derive the optimal thresholds
for all subbands to allow for efficient use of the unexploited spectrum
by the CR without causing harmful interference to the PUs. However,
only one sample per subband, which defines a PU, is considered and
it is not clear how the cyclic features relate to the signal parameters,
such as carrier frequencies and bandwidths.

However, in the above works, no parameter estimation is per-
formed. In [12], the carrier frequency of the input signal is assumed to
be known and its symbol rate is estimated using the wavelet transform
to locate transients produced from phase changes. This technique
is used in [13] for modulation classification purposes. Joint carrier
frequency, modulation type and bit rate estimation is performed
in [14] using the phase derivative. However, the simulations are
carried out at very high SNR regimes, between 35 and 70dB. These
parametric methods consider one single input signal and cannot
inherently be extended to multiple signals to fit the multiband model.

An alternative approach considers machine learning tools for the
modulation classification of a single signal with unknown carrier
frequency and symbol rate. In [15], a peak search and save algorithm
is proposed, that includes a training phase where a lookup table
containing the locations and number of peaks is built for every
potential PU. In [16], the classification is performed using neural
networks. A hidden Markov model (HMM) approach is considered
in [17]. By combining an HMM and a support vector machine (SVM)
classifier, the authors in [18] improve the classification performance.
The cyclostationary frequencies, namely carrier and symbol rate, are a
byproduct of the classification process. However, these approaches are
only suitable for a signal and require a training phase, which would
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be a main drawback for CR purposes. In particular, these techniques
can only cope with PUs whose modulation type and parameters were
part of the training phase.

In order to overcome the sampling rate bottleneck of wideband
signals, cyclostationary detection from sub-Nyquist samples has re-
cently been considered [19], [20], [21]. Different cyclic spectrum re-
construction approaches from sub-Nyquist samples are presented and
multi-cycle detectors are applied on the reconstructed cyclic spectrum.
Our algorithm can be applied to either of these reconstructed spectra
in order to extract the carrier frequencies and bandwidths. In the
simulations, we consider the approach of [21].

In this work, we propose a simple carrier frequency and band-
width estimation from the cyclic spectrum of multiband signals.
This approach allows the estimation of several carriers and several
bandwidths simultaneously. It does not involve any training and
simulations show that it achieves high precision even at low SNR
regimes, down to -17dB. Furthermore, as we show, our approach can
operate on both Nyquist and sub-Nyquist samples, as opposed to cer-
tain techniques that necessitate oversampling. We adopt a clustering
method; the spectral peaks are detected by simple thresholding and
then clustered. The number of signals is estimated from the clusters
number and for each transmission, its carrier frequency and bandwidth
are estimated from the corresponding clusters. Our main contribution
is a simple algorithm that fits the multiband model, without any
prior knowledge nor learning requirements. In the simulations, we
demonstrate parameter estimation from synthesized Nyquist samples
as well as samples obtained from a radio frequency (RF) signal
generated by a Universal Software Radio Peripheral (USRP), and sub-
Nyquist samples obtained using the Modulated Wideband Converter
(MWC) [23].

This paper is organized as follows. Section II presents the cyclo-
stationary multiband model. In Section III, we describe the parameter
estimation algorithm from the signal cyclic spectrum. Numerical
experiments showing carrier frequency and bandwidth recovery are
presented in Section IV.

II. CYCLOSTATIONARY MULTIBAND SIGNALS

A. Multiband Model

Let x(t) be a real-valued continuous-time signal, supported on
F = [−1/2TNyq,+1/2TNyq] and composed of up to Nsig uncorrelated
cyclostationary transmissions, such that

x(t) =

Nsig∑
i=1

si(t). (1)

Here si(t) is a zero-mean cyclostationary bandpass process, as
defined below, from the class of pulse-amplitude modulation (PAM)
signals, such that

si(t) =
√
2 cos(2πfit)

∑
k

aIkg(t− kTi)

−
√
2 sin(2πfit)

∑
k

aQk g(t− kTi). (2)

The symbols modulating the in-phase and quadrate components
are denoted {aIk} and {aQk }, respectively, and g(t) is the pulse
shape function. The single-sided bandwidth, the carrier frequency
and the symbol period are denoted by Bi, fi and Ti, respectively.
Special cases of passband PAM include phase-shift keying (PSK),

amplitude and phase modulation (AM-PM) and quadrature amplitude
modulation (QAM) [24].

Formally, the Fourier transform of x(t) defined by

X(f) = lim
T→∞

1√
T

∫ T/2

−T/2
x(t)e−j2πftdt (3)

is zero for every f /∈ F . We denote by fNyq = 1/TNyq the Nyquist rate
of x(t). The number of transmissions Nsig, their carrier frequencies,
bandwidths, symbol rates and modulations, including the symbols
{ak} and the pulse shape functions g(t), are unknown, namely the
cyclic spectrum reconstruction is performed in a blind scenario.

B. Cyclostationarity

A process x(t) is said to be cyclostationary with period T0 in
the wide sense if its mean E[x(t)] = µx(t) and autocorrelation
E[x(t)x(t+ τ)] = Rx(t, τ) are both periodic with period T0 [5]:

µx(t+ T0) = µx(t), Rx(t+ T0, τ) = Rx(t, τ). (4)

Given a wide-sense cyclostationary random process, its autocorrela-
tion Rx(t, τ) can be expanded in a Fourier series

Rx(t, τ) =
∑
α

Rαx (τ)e
j2παt, (5)

where α = m/T0,m ∈ Z and the Fourier coefficients Rαx are referred
to as cyclic autocorrelation functions. The cyclic spectrum is obtained
by taking the Fourier transform of Rαx with respect to τ , namely

Sαx (f) =

∫ ∞
−∞

Rαx (τ)e
−j2πfτdτ, (6)

where α is referred to as the cyclic frequency and f is the angular
frequency [5]. If there is more than one fundamental frequency T0,
then the process x(t) is said to be polycyclostationary in the wide
sense. In this case, the cyclic spectrum contains harmonics (integer
multiples) of each of the fundamental cyclic frequencies [4].

Another interpretation of the cyclic spectrum we will exploit,
is that it is the cross-spectral density Sαx (f) = Suv(f) of two
frequency-shifted versions of x(t), u(t) , x(t)e−jπαt and v(t) ,
x(t)e+jπαt. Then, from [25], it holds that

Sαx (f) = Suv(f) = E
[
X(f +

α

2
)X∗(f − α

2
)
]
. (7)

It can be shown [4] that stationary noise w(t) exhibits no cyclic
correlation, that is Sαw(f) = 0, α 6= 0. This property is the
motivation for cyclostationary detection, in low SNR regimes in
particular.

C. Cyclic Spectrum of Multiband Signals

Let us denote by [f
(1)
i , f

(2)
i ] the right-side support of the ith

transmission si(t). It holds that Bi = f
(2)
i − f (1)

i and fi = (f
(1)
i +

f
(2)
i )/2. The support region in the (f, α) plane of the cyclic spectrum
Sαsi(f) of such a bandpass cyclostationary signal is composed of four
diamonds, as shown in Fig. 1. More precisely, it holds that [4]

Sαsi(f) = 0, for ||f | − |α|
2
| ≤ f (1)

i or |f |+ |α|
2
≥ f (2)

i . (8)

Since the transmissions si(t) are assumed to be zero-mean and
uncorrelated (coming from different sources), the cyclic spectrum
of x(t) does not contain any additional harmonics which would
result from correlation between different transmissions. Therefore,
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Fig. 1. Support region of the cyclic spectrum of Sαsi (f).

the support of Sαx (f) is composed of 4Nsig diamonds, namely four
diamonds for each transmission as those shown in Fig. 1. Moreover,
since x(t) is bandlimited to F , it holds that [4]

Sαx (f) = 0, for |f |+ |α|
2
≥ fNyq

2
. (9)

Applying (7) for α = ±2fi, namely

S±2fi
x (f) = E [X(f + fi)X

∗(f − fi)] , (10)

computes the correlation between the positive and negative bands of
the ith transmission. This generates a peak, or cyclic feature, in Sαx (f)
at the location (f = 0, α = ±2fi). By detecting the peak location,
we can estimate the carrier of the corresponding transmission si(t).
Furthermore, from (8), it is clear that the occupied bandwidth in the
cyclic spectrum at α = ±2fi is equal to the bandwidth Bi. This will
be exploited to estimate the transmission bandwidth.

D. Goal

Our objective is to estimate the number of transmissions
si(t), 1 ≤ i ≤ Nsig present in x(t), their carrier frequencies
fi and their bandwidths Bi. These completely define the signal
support, for detection purposes. To that end, we propose to extract
the carrier frequencies and the bandwidths from the cyclic spectrum.
We note that the transmissions symbol rate can be derived from their
bandwidth, as

Ti =
1 + γ

2Bi
, (11)

where γ is the excess-bandwidth parameter of g(t) [24]. Therefore,
we will focus only on carrier frequency and bandwidth estimation,
since the symbol rate can be directly determined from the estimated
bandwidth, if the excess-bandwidth parameter γ is a priori known.

III. PARAMETER ESTIMATION ALGORITHM

The proposed estimation algorithm can be decomposed into the
following main five steps: cyclic spectrum estimation, preprocessing,
thresholding, clustering, parameter estimation. The main contribution
of this approach is the estimation of the number of signals, and
for each transmission, the estimation of its carrier frequency and
bandwidth from the clusters.

A. Cyclic Spectrum Estimation

The cylic spectrum of the input signal x(t), namely Sαx (f) is
first computed using (7). In practice, in order to estimate the cyclic
spectrum Sαx (f) we first compute X(f), using the fast Fourier
transform (FFT) on the samples x[n] over a finite time window of
size Nsamp. The cyclic spectrum is then estimated by averaging over
P frames as follows

Ŝαx (f) =

P∑
p=1

[
X(f +

α

2
)X∗(f − α

2
)
]
. (12)

The total number of samples is therefore NsampP .

B. Preprocessing

The preprocessing simply aims at compensating for the presence
of stationary noise at the cyclic frequency α = 0. This is motivated
by the fact that the threshold which will be used for peak detection
in the next step is proportional to the mean energy of the signal. In
low SNR regimes, the energy in DC due to the noise might lead to
a very high threshold, annihilating peaks at other cyclic frequencies.

C. Thresholding

We can now apply thresholding to the resulting cyclic spectrum in
order to find its peaks. The threshold is a design parameter that is set
with respect to the average sample energy. For each cyclic frequency
α, we retain the highest peak along the abscissa axis.

D. Clustering

The locations and values of the peaks are then clustered to find
the corresponding cyclic feature. A cyclic feature yields a cluster of
peaks, rather than a single one, due to the finite sensing time.

1) Clusters number estimation: We start by estimating the number
of clusters, which is traditionally required in clustering methods. To
that end, we use the elbow method, which can be traced to speculation
by Thorndike [26]. This iterative method is based on the ratio between
group variance (sum of the variances in each cluster) to the total
variance, or variance percentage. More precisely, in each iteration,
the number of clusters is increased and clustering is performed with
respect to it, as described in the next section. When the ratio between
the variance percentage of two consecutive values of the number of
clusters becomes higher than a certain threshold, the algorithm stops
and the number of clusters is set to its current value. Specifically, we
start with 3 clusters and consider only odd numbers of clusters (the
peaks all come in pairs due to the symmetry of the cyclic spectrum
except for the extra DC peak). The threshold is a design parameter.

2) Clusters separation: Clustering is performed using the k-
means method. Since the cylic spectrum is symmetric with respect to
the abscissa axis, we feed the k-means with the sum of the values of
the positive cyclic frequencies and their negative counterpart. The k-
means algorithm, which involves a random factor in the initialization,
is run several times, and the median result is selected. Each cluster
represents a cyclic feature. It follows that, apart from the cluster
present in DC which we will remove, the number of signals Nsig is
equal to half the number of clusters (when we duplicate the clusters
back to the positive and negative cyclic frequencies). We note that the
peaks present in the diamonds around α = 0 (see Fig. 1) are absorbed
in the DC cluster for all the transmissions, along with the stationary
noise. Thus, the parameter estimation described in the next section
only lies on the upper and lower diamonds features (see Fig. 1).
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Fig. 2. Cyclic spectrum (left), cyclic peaks clustering (right)

E. Parameter Estimation

We can now estimate the carrier frequencies and bandwidths of
the Nsig transmissions. We first estimate the carrier frequency fi of
each transmission. The carrier frequency yields the highest correlation
[4] and thus the highest peak, at the cyclic frequency equal to twice
its value, namely α = 2fi. It is therefore estimated as half the cyclic
frequency of the highest peak within the clusters belonging to the
same signal.

Last, the bandwidth of each transmission is determined based on
its estimated carrier frequency. Again, exploiting the fact that the cylic
spectrum is symmetric with respect to the abscissa axis, we compute
the sum of its values at α = 2fi and α = −2fi along the angular
frequencies f . The bandwidth is found by locating the edge of the
support of the angular frequencies. To that end, we choose a threshold,
which is a design parameter, and find the farthest location from f = 0
along α = ±2fi for which the value of the cyclic spectrum S±2fi

x (f)
is above that threshold.

IV. SIMULATION RESULTS

In this section, we first illustrate our estimation method. We then
investigate the impact of noise on the performance of our estimator.
We consider synthesized Nyquist and sub-Nyquist samples as well as
RF Nyquist samples.

Let x(t) be composed of Nsig = 3 BPSK transmissions with
Nyquist rate fNyq = 150MHz and carrier frequencies f1 = 20MHz,
f2 = 30MHz, f3 = 40MHz, and with bandwidths B1 = B2 =
B3 = 0.67MHz. The SNR is set to be −10dB. The cyclic spectrum
is estimated by averaging over P = 200 frames, each with Nsamp =
1000. Figure 2 shows the estimated cyclic spectrum, Ŝα(f), of x(t)
after the preprocessing step and the results from the clustering after
duplication. The highest peaks, one for each cyclic frequency α which
is obtained at the thresholding step, are clustered into 7 groups (twice
the number of signals plus the DC cluster). The estimation results for
this setting were as follows: f1 = 20.08MHz, f2 = 30.04MHz,
f3 = 39.94MHz and B1 = 0.67MHz, B2 = 0.62MHz, B3 =
0.71MHz.

We now examine our algorithm estimation performance. For lack
of space, we only compare carrier frequency estimation performance
of our approach with energy detection. Let x(t) be composed of
Nsig = 3 transmissions. Each transmission is a BPSK modulated
signal with carrier frequency fi in the interval [10 − 50]MHz and
bandwidth Bi between 0.6 and 1MHz. The carrier frequencies and
bandwidths values are drawn uniformly at random for each realisation.
The SNR is set to −10dB. The signal x(t) is sampled at the rate
fs = 150MHz and its cyclic spectrum is estimated by averaging
over P = 500 frames, each with Nsamp = 1001. Each experiment
is repeated over 1000 realisations. Figure 3 shows the probability of

Fig. 3. Receiver operating characteristic (ROC).

detection of the estimator as a function the probability of false alarm.
A success is declared when the error of the estimator is below 5
times the frequency resolution, which is is 0.3MHz in this setting.
The probability of detection is computed by averaging over the 3
transmissions. A false alarm is declared if at least one detected signal
is in fact only noise. We observe that the probability of detection
increases with the probability of false alarm up to a certain point and
then decreases. This unusual behavior follows from the fact that the
thresholding comes before clustering and other processing tasks. High
thresholds lead to few peaks, which in turn yields low probabilities
of detection and false alarm. When the threshold descreases, both
probabilities increase with the detection improving faster. Last, when
the threshold gets too low, several clusters belonging to different
signals can merge, affecting the probability of detection, while the
probability of false alarm obviously increases.

Our algorithm has been tested on samples from an RF signal
generated by a NI c© USRP-2942-R RF generator. Here, x(t) is
composed of Nsig = 2 transmissions with carriers f1 = 38MHz
and f2 = 47MHz, and bandwidths B1 = B2 = 0.25MHz.
The SNR is −15dB, the sampling rate fs = 120MHz, and the
frequency resolution 12KHz. The cyclic spectrum is estimated by
averaging over P = 992 frames, each with Nsamp = 1001, with
overlapping. The estimation results for this setting were as follows:
f1 = 37.88MHz, f2 = 46.87MHz, and B1 = 0.22MHz,
B2 = 0.36MHz.

Last, we applied our algorithm to a cyclic spectrum reconstructed
from sub-Nyquist samples obtained using the MWC [23], using
the sub-Nyquist cyclic spectrum recovery algorithm from [21] to
which we apply our parameter estimation algorithm. Here, x(t)
is composed of Nsig = 3 BPSK transmissions with Nyquist rate
fNyq = 6.381GHz and carrier frequencies f1 = 1619.06MHz,
f2 = 1714.30MHz, f3 = 2285.73MHz, and bandwidths B1 =
B2 = B3 = 10MHz. The SNR is 10dB, the sampling rate
fs = 2.381GHz, and the frequency resolution 1.587MHz. The
cyclic spectrum is estimated by averaging over P = 100 frames,
each with Nsamp = 7437. The estimation results for this setting were
as follows: f1 = 1619.46MHz, f2 = 1714.73MHz, f3 = 2286.30,
and B1 = 9.1MHz, B2 = 9.0MHz and B3 = 9.7MHz.
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