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ABSTRACT
In this paper, we address the optimal quantizer design problem for
distributed Bayesian parameter estimation with one-bit quantization
at local sensors. A performance limit obtained for any distributed
parameter estimator with a known prior is adopted as a guidance
for quantizer design. Aided by the performance limit, the optimal
quantizer and a set of noisy observation models that achieve the
performance limit are derived. Further, when the performance limit
may not be achievable for some applications, we develop a near-
optimal estimator which consists of a dithered noise and a single
threshold quantizer. In the scenario where the parameter is Gaussian
and signal-to-noise ratio is greater than −1.138 dB, we show that
one can construct such an estimator that achieves approximately
99.65% of the performance limit.

Index Terms—Distributed Bayesian Estimation, One-bit Quanti-
zation, Quantizer Design, Cramer-Rao Lower Bound, Asymptotic
Performance Limit

I. INTRODUCTION

Distributed estimation is a classical research problem in wireless
sensor network [1]–[3]. One of the typical network structures in
distributed estimation is the parallel network, where a number of
local sensors send their compressed observations to a fusion center
(FC), and the FC makes an estimate. Due to constraints of sensor
power and transmission bandwidth between local sensors and FC,
the sensor observations are often quantized into one or a few bits
based on their quantization rules. One-bit quantization is employed
in the scenarios where the bandwidth and sensor power are severely
limited [2]–[8].

Performance of a distributed estimator is largely determined
by the quantizer at sensors and the estimator at the FC. One of
the most widely used performance metrics for an estimator is its
mean squared error (MSE). For any unbiased estimator, MSE is
lower bounded by its Craḿer-Rao lower bound (CRLB) [9]. Since
the maximum likelihood (ML) and Maximum a Posteriori (MAP)
estimation achieve the CRLB asymptotically [9], [10], this bound
is often employed as a metric for performance evaluation and
optimization in distributed estimation systems [3], [8]. Compared
to centralized estimation settings where the unquantized data are
directly accessible, distributed estimation suffers a logarithm rate
loss in estimation performance with the use of some uniform
dithered quantizers [4], [11]. To further improve estimation per-
formance, the design of local quantizers with nonidentical and
identical quantization rules are investigated, respectively in [6] and
[12]. Quantizer design and its performance in distributed Bayesian
estimation framework using Posterior Craḿer-Rao lower bound
(PCRLB) were discussed in [8]. However, the applicability of
such approaches are rather limited as PCRLB cannot be achieved

under some circumstances [10]. Overall, the problem of optimal
quantizer design is shown to be extremely complicated in many
applications [13], and the design of optimal distributed estimators
is still an open problem in general except for a few very special
cases. Some progress in addressing the optimization problem in
distributed estimation were made where the sensor data are con-
ditionally independent and identically distributed (i.i.d.). In [3],
[7], the performance limit (PL) with identical one-bit quantizer
was derived under the minimax criterion. Recently, the PL under
Bayesian setting with a known prior distribution was derived in
[14]. Compared to the naïve full precision PL which assumes
the unquantized sensor data are available at the FC, the proposed
distributed PLs are shown to be comparatively much tighter in most
meaningful signal-to-noise ratio (SNR) regions [3], [14].

In this paper, we consider the problem of estimating a random
scalar parameter θ from N i.i.d. noisy one-bit quantized distributed
sensor messages with identical quantizers. Note, while nonidentical
quantizers may offer better performance, they are sensitive to
system changes, complicated to design, optimize, and implement in
practical applications. We show in this work that, surprisingly, in
some practical applications, the Bayesian PL in [14] may actually
be achieved or nearly achieved by a dithered Sign quantizer, i.e.,
a dithered threshold quantizer with threshold 0 and the dithering
noise follows a certain distribution. We derive the pdf of optimal
dithered noise as well as the near-optimal noise, if the former is
hard to obtain. For example, when the parameter θ is a Gaussian
random variable and the observations are contaminated by additive
Gaussian noises, we show that the performance achieved by a
simple dithered Sign quantizer is very close to the PL.

II. DISTRIBUTED BAYESIAN ESTIMATION WITH
ONE-BIT QUANTIZATION

We investigate a distributed estimation problem in wireless
sensor networks where the goal is to estimate a random scalar
parameter θ from a set of N conditionally i.i.d. sensor observations
X = [X1, X2, · · · , XN ] with Xi be the observation at sensor i,
i ∈ {1, 2, . . . , N} such that

f (X|θ) =

N∏
i=1

f (Xi|θ) ,

where f (X|θ) and f (Xi|θ) are known probability density func-
tions (pdfs), and θ has a prior pdf pθ (θ) defined on an open support
Θ = {θ ∈ < : pθ (θ) > 0} = (a, b), where a, b (can be −∞ or∞)
are known lower and upper bounds for θ, respectively. A widely
considered case of such model is the location estimation problem,
where

Xi = θ +Wi, (1)
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and Wi is the additive i.i.d. zero mean observation noise with pdf
fW (·). We assume the observed data Xi is quantized to Ui, a one-
bit quantized message (0 or 1) with quantization rule γi : < →
[0, 1], such that

γi (Xi) = Pr (Ui = 1|Xi) .

We consider all possible local quantization rules similar to those
investigated in [3] by letting γi (x) ∈ [0, 1] be a real number be-
tween 0 and 1 and assume the channels between the sensors and the
FC are noiseless such that FC receives Ui without error. Moreover,
notice the advantage of identical quantization rules, we consider
only identical quantizers such that γ = γ1 = γ2 = · · · = γN .

In the literature, the Sign quantizer γS(x) is widely employed
with the output be the sign of observation such that

γS(x) =

{
1 Xi ≥ 0

0 Xi < 0.

While the Sign quantizer is simple to implement, its performance
is not always satisfactory, especially when SNR is high [3], [7]. In
practice, dithering is often used in quantization [15]–[17]. Under
the Sign quantization scheme, if a dithering noise Wd,i is added
so that Ui = 1 when Xi + Wd,i > 0, the resulting quantization
rule can be described as a probabilistic quantizer γi(Xi) =
Pr (Xi +Wd,i > 0) = Pr (Wd,i > −Xi) = 1 − FWd,i (−Xi),
where FWd,i (·) is the cumulative distribution function (cdf) of
Wd,i. Therefore, a monotonic non-decreasing quantizer γi can be
implemented by a dithered Sign quantizer with a suitable noise
Wd,i with pdf fWd,i (x) =

dFWd,i
(x)

dx
= d(1−γi(−x))

dx
= γ

′
i (−x)

and vice versa.
As the estimation made at the FC is based on {U1, U2, . . . , UN},

the estimation performance is completely determined by the condi-
tional probability mass function (pmf) κ(θ) = Pr(Ui = 1|θ) given
by

κ (θ) = Ex|θ [Pr (Ui = 1|Xi)] =

ˆ
x

[γ (x) f (x|θ)] dx,

which is a function of the quantization rule γ (x) and observation
model f (X|θ). To ensure the existence of an consistent estimator,
κ(θ) has to be unique for any θ, i.e., κ (θ1) 6= κ (θ2), ∀θ1 6= θ2.

II-A. Asymptotic Estimation Performance and the Perfor-
mance Limit of a Distributed Bayesian Estimator

When the size of sensor network is reasonably large, the normal-
ized asymptotic MSE ε (θ, κ, f) = N ·MSE for efficient Bayesian
estimators (MLE, MAP are asymptotic efficient) is given by [10]

ε (κ, f) ≈ N · Eθ (CRLB (θ, κ, f))

≈ Eθ
(

1

Ii (θ, κ, f)

)
(as N →∞)

=

ˆ +∞

−∞

[
pθ (θ)

1

Ii (θ, κ, f)

]
dθ (2)

where Ii (θ, κ, f) =
( d
dθ
κ(θ))2

κ(θ)(1−κ(θ))
is the Fisher information (FI) at

sensor i with a differentiable κ on θ [3]. Among all possible obser-
vation models, the best performance is achieved with the perfect
observation where each sensor observes Xi = θ in a noiseless,

deterministic manner. It was shown that if
´ b
a
pθ (θ)

1
3 dθ < ∞,

the asymptotic PL εPL for any one-bit identical quantizer and any
arbitrary observation model is [14]

εPL =

(´ b
a
pθ (θ)

1
3 dθ

)3

π2
(3)

with ε ≥ εPL for any distributed estimators regardless of its obser-
vation model. This PL can be achieved by applying a probabilistic
quantizer

κo (x) = γo(x) =
1

2

(
1− cos

(
π

´ θ
a
pθ (t)

1
3 dt´ b

a
pθ (θ)

1
3 dθ

x

))
(4)

for the perfect observation case. By flipping the sensor outputs
from 0 to 1 or 1 to 0, it can be shown that the same estimation
performance is also achievable by the probabilistic quantizer 1 −
γo (x).

III. OPTIMAL QUANTIZER DESIGNS
Since the case of perfect observation rarely exists in practical

applications, we consider the cases where the observations are con-
taminated by additive noise, and try to design the optimal Bayesian
estimator. Instead of comparing the estimation performance to
the naïve full precision bound (which is often too loose and not
achievable), we rely on the Bayesian PL to determine the optimality
of the estimator. With Bayesian PL serves as a benchmark for all
observation models and all possible quantizers, if one can find a
quantizer that achieves the PL, then no other quantizer can perform
better, and the optimal design problem is solved. If such optimal
quantizer is difficult to obtain, the problem is considered to be
almost solved if one can find a quantizer that has a negligible gap
between its performance and the PL. In the following, we discuss
the observation models and focus especially on the dithered Sign
quantizer design to achieve or approach the optimal performance
(PL), whenever is possible.

III-A. Achieving the PL with a Sign Quantizer
First, we consider a special case of the localization model (1)

when the observation noise Wd,i ∼ fW = fWo , where fWo is
given by

1− FWo (−θ) = κo(θ)↔ fWo(θ) =
dFWo (·)
dθ

= κ′o(−θ), (5)

by applying a Sign quantizer at the sensors, the resulting conditional
probability is thus κ (θ) = P (Ui = 1|θ) = P (θ + Wi > 0) =
1 − FW (−θ) = 1 − FWo (−θ) = κo (θ), where κo (θ) denotes
the optimal pmf achieved under perfect observation Xi = θ as
in equation (4). Therefore, when the observation noise follows
fW (x) = fWo (x) = κ′o(−x), the PL is achieved with a Sign
quantizer.

III-B. Achieving the PL with a Dithered Sign Quantizer
Next, we analyze the more general case where the pdf of

observation noise fW (·) is not the same as fWo (·). Recall that any
monotonic nondecreasing γ(x) can be implemented equivalently
as a dithered Sign quantizer with a dithering noise Wd,i, where
the corresponding pdf is fWd (x) = γ′ (−x). With dithering
noise, the dithered observation becomes X̃i = Xi + Wd,i =
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θ + Wi + Wd,i = θ + W̃i, where W̃i = Wi + Wd,i. Therefore,
it is still possible to achieve the PL as long as fW̃ , the pdf of
W̃i is the same as fWo . Using the relationship between pdfs of
two summed random variables, such equivalence can be described
as, fW̃ = fW (·) ∗ fWd (·) = fWo (·), where fWd (·) is the pdf
of additive dithered noise Wd,i, and ∗ denotes the convolution
operator. Taking the Fourier transformation on both sides of the
equation, the resulting FW (ω)FWd (ω) = FWo (ω) leads to
fWd (x) = F−1

(
FWo (ω)

FW (ω)

)
, where F and F−1 denote the Fourier

transformation (FT) and the Inverse Fourier transformation (IFT),
respectively. Since fW (·) and fWo (·) are pdfs, i.e., FW (0) =
FWo (0) = 1, and the dithered noise is therefore maintains
FWd (0) =

´ +∞
−∞ fWd (x) dx = 1. For fWd (·) to be a valid pdf,

the only constraint is fWd (·) ≥ 0. If such a F−1
(
FWo (ω)

FW (ω)

)
is

valid, then the optimization problem is completely solved.
However, this analytical approach cannot be implemented in

many practical applications. For example, in the case when
F−1

(
FWo (·)
FW (·)

)
is not a valid pdf, the dithering noise fWd (·) which

achieves PL does not exist. Moreover, it is often too difficult to
obtain FWo (·) or FWi (·), e.g., when fWo (·) is a complicated
function, its FT may not be that easily calculated as we will
show in Section IV. Fortunately, in some cases, design approaches
exploiting the structure of the observation models can be employed
to obtain sub-optimal quantizers which perform closely to the PL.

IV. DISTRIBUTED ESTIMATION OF A GAUSSIAN
RANDOM PARAMETER

We now consider the important case when the parameter θ
is Gaussian distributed. Without loss of generality, we assume
θ ∼ N (0, 1) with zero mean and unit variance. Consider the
localization model (1) where the observation noise is also Gaussian
with Wi ∼ N

(
0, σ2

w

)
, we aim to design the optimal PL achieving

quantizer (if possible) as well as the near-optimal quantizer with a
performance close to the PL.

Note the existence of pθ (θ)
1
3 integral satisfies the condition for

the derived PL (3) in [14]. We first consider the perfect observation
case where σ2

w = 0↔ X = θ, establish the PL εg (e.g. subscript
g) as the performance benchmark, and derive the corresponding
optimal κo (θ) as well as the optimal dithering noise pdf fWo (·)
that can be used to implement a dithered Sign quantizer to achieve
εg .

Corollary 1. [Optimal Dithered Noise in Distributed Bayesian
Estimation with Gaussian Prior and Identical Sign Quantizer]

For distributed Bayesian estimation with local sensors obser-
vation model (1), if the parameter θ has Gaussian pdf pθ (θ) =
Φ (θ), the best performance for distributed Bayesian estimation is
εg = 6

√
3

π
. When the Sign quantizer is applied for each sensor

observation with the zero observation noise (Xi = θ, Wi = 0), the
optimal dithered noise Wd,i (added to Xi or θ) that achieves the
performance limit εg has the following distribution

fWo,g (θ) =

[
π

2
√

3
sin

(
πQ

(
θ√
3

))]
Φ

(
θ√
3

)
, (6)

where Q (x) = 1√
2π

´ +∞
x

exp
(
− t

2

2

)
dt and Φ (x) =

1√
2π

exp
(
−x

2

2

)
is the pdf of standard Gaussian.

The proof of corollary 1 is given in VII.

Remark 2. When the prior on θ is standard Gaussian, formula (6)
suggests the optimal dithered noise also has some characteristics
of a Gaussian distribution, where

[(
π

2
√

3

)
sin
(
πQ
(
θ√
3

))]
acts

as a scaling factor on Gaussian pdf Φ
(
θ√
3

)
.

Remark 3. In a different perspective, if the observation noise
satisfies Wi ∼ fWo,g (·) in (1), then εg is obtained via the use
of a Sign quantizer. For the general case where Wi � fWo,g (·),
εg is still achievable if there exists a dithered noise Wd,i satisfies
Wi +Wd,i ∼ fWo,g (·), or fW (·) ∗ fWd (·) = fWo,g (·). However,
such fWd (·) may not exist due to pdf legitimate requirement on
fWd (·). The validity of fWd (·) is not easy to examine due to
the difficulty in calculating FT of fWo,g (·) and IFT of fWd (·) =

F−1
(
FWo (·)
FW (·)

)
.

Therefore, for the general case where the observation noise
variance σ2

w 6= 0, we consider a special class of dithering noise
where Wd,i ∼ N

(
0, σ2

d

)
. Since the sum of two independent

Gaussian is still Gaussian, we have W̃i = Wi+Wd,i ∼ N
(
0, σ2

w̃

)
where σ2

w̃ = σ2
w + σ2

d, and the optimization problem reduces to
find the optimal σ2

w̃ = σ2
o ≥ σ2

w and the optimal dithering noise
Wd,i ∼ N

(
0, σ2

o − σ2
w

)
that minimizes the normalized MSE.

When X = θ + W̃ , the FI per sensor is given by I (θ) =(
Φ
(
θ
σw̃

))2

σ2
w̃Q

(
θ
σw̃

)
Q
(
− θ
σw̃

) [3] and the asymptotic MSE (2) is therefore

ε
(
σ2
w̃

)
=

ˆ +∞

−∞

σ2
w̃Φ (θ)Q

(
θ
σw̃

)
Q
(
− θ
σw̃

)
(

Φ
(

θ
σw̃

))2 dθ.

With a numerical search, we found that with a optimal σ2
w̃ =

σ2
o = 1.142, a minimum normalized MSE ε

(
σ2
o

)
is achieved with

ε
(
σ2
o

)
= 3.319. Compared to the PL εg , the optimal Gaussian

dithered quantizer is about 3.308
3.319

= 99.65% efficient as the
PL. Since PL is the performance upper bound for all possible
observation models, the Gaussian dithered Sign quantizer with
noise N

(
0, σ2

o − σ2
w

)
is therefore “almost” asymptotically optimal

(with an efficiency at least 99.65% of the optimal one), as long
as σ2

w ≤ σ2
o = 1.142 or equivalently, the SNR of the sensor

observations is greater than 10 log 1
1.142 = −1.138dB. Here, we

denote σ2
o as the near-optimal Gaussian noise variance. Thus, the

asymptotic optimal distributed design problem is solved, and the
corresponding asymptotic optimal quantizer is a dithered quantizer
with Gaussian dithering noise N

(
0, 1.142 − σ2

w

)
.

In this paper, we solved the asymptotic optimal distributed
estimator design problem for a wide range of SNRs between
10 log 1

σ2
o

dB = −1.138dB to ∞dB. When SNR is lower
than−1.138dB, our numerical simulation results suggest that the
optimal dithering noise is 0.

V. EXPERIMENTAL RESULTS
V-A. Near-Optimal Gaussian Noise under Distributed
Bayesian

When the parameter θ is Gaussian distributed with θ ∼ N (0, 1),
we now validate our observation of the Gaussian characteristic in
fWo,g (θ) by showing the pdf comparison between the optimal
dithered noise fWo,g (θ) and the near-optimal Gaussian noise
N
(
0, σ2

o

)
in Figure 1(b). The similarity between these two pdfs

further indicates the near-optimal performance of the additive
Gaussian noise N

(
0, σ2

o

)
.
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Fig. 1. (a) Numerical search of near-optimal Gaussian noise:
N
(
0, 1.142

)
, MSE = 3.319. (b) PDF comparison between optimal

noise fWo,g (θ) and near-optimal Gaussian noise N
(
0, 1.142

)
.

V-B. Monte Carlo Simulation of Asymptotic MSE under MLE
and MAP

Next, we perform Monte Carlo simulations of MSE under
MLE and MAP for different Gaussian dithered Sign quantizer
designs. When the dithering observation is contaminated by W̃ ∼
N
(
0, σ2

w̃

)
, MLE of θ is given by

θ̂ = −σw̃Q−1

(∑i=N
i=1 Ui

N

)
,

and the MAP of θ is determined by

θ̂ :=arg max
θ

[

(
i=N∑
i=1

Ui

)
log

(
Q

(
− θ

σw̃

))

+

((
N −

i=N∑
i=1

Ui

)
log

(
Q

(
θ

σw̃

)))
+ log (Φ (θ))],

where Q−1 denotes the inverse of complementary cdf of Gaussian
distribution [9].

Figure 2 demonstrates the effectiveness of the proposed near-
optimal dithered quantizer. When the system SNR = 0.915dB
(σ2
w = 0.92), the estimation performance diverges with a Sign

quantizer without dithering noise. The near-optimal performance
is achieved if we apply a dithered Sign quantizer with dithering
Gaussian noise Wd,i ∼ N

(
0, 1.142 − 0.92

)
. For situations where

SNR < −1.138dB (σ2
w > 1.142), the PL cannot be reached by a

Sign quantizer. It is noticed that the MAP outperforms MLE due
to its use of prior distribution of θ. Also, when number of sensors
N is small, the performance of both MLE and MAP are better
than the PL, due to PL is an asymptotic performance bound for
sufficiently large N . For the case when sensor number is small
(non-asymptotic), the Bayesian PL is not tight.

VI. CONCLUSION
We considered the problem of parameter estimation in distributed

system with i.i.d. sensor observations and independent identical
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Fig. 2. Monte Carlo simulation of MSE under MLE and MAP:
near-optimal N

(
0, 1.142

)
.

quantizers under Bayesian criterion where the prior probability
density function of the parameter is known. We developed design
approaches for optimal and near-optimal distributed estimation
systems when the sensors observations are quantized to one-bit
messages. For the case where the signals are contaminated by
additive Gaussian noise, we developed a near-optimal dithered
quantizer with a performance close to the PL, and validated our
result via Monte Carlo simulations.

VII. PROOF OF COROLLARY
From (3), the best achievable performance for distributed

Bayesian estimation with standard Gaussian observation θ ∼
N (0, 1) is εg = 6

√
3

π
, which is achieved under noise free condition

X = θ. Under such setting, let κ (θ) = γ (θ) = Pr (Ui = 1|θ) =
1+sin(g(θ))

2
with g (θ) : (a, b) →

[
−π

2
, π

2

]
[14], and the optimal

dithered noise fWo (·) from (5) is thus

fWo(θ) = γ′o(−θ) =
g′ (θ) cos (g (−θ))

2
. (7)

Given perfect Gaussian observation model, the gradient of g (θ)
[14] after applying the optimal Co is

g′ (θ) =
π

3
1
2 (2π)

1
2

exp

(
θ

6

)
=

π√
3

Φ

(
θ√
3

)
, (8)

and the integration of (8) gives

g (θ) =

ˆ θ

−∞
g′ (t) dt+ g (a) = πQ

(
− θ√

3

)
− π

2
. (9)

Thus, Corollary 1 is proved by substituting (8) and (9) in (7).

3714



VIII. REFERENCES

[1] J. Gubner, “Distributed estimation and quantization,” Informa-
tion Theory, IEEE Transactions on, vol. 39, no. 4, pp. 1456–
1459, Jul 1993.

[2] W.-M. Lam and A. R. Reibman, “Design of quantizers for
decentralized estimation systems,” IEEE Transactions on com-
munications, vol. 41, no. 11, pp. 1602–1605, 1993.

[3] H. Chen and P. Varshney, “Performance limit for distributed
estimation systems with identical one-bit quantizers,” Signal
Processing, IEEE Transactions on, vol. 58, no. 1, pp. 466–
471, Jan 2010.

[4] O. Dabeer and A. Karnik, “Signal parameter estimation using
1-bit dithered quantization,” Information Theory, IEEE Trans-
actions on, vol. 52, no. 12, pp. 5389–5405, 2006.

[5] V. Megalooikonomou and Y. Yesha, “Quantizer design for
distributed estimation with communication constraints and
unknown observation statistics,” IEEE Transactions on Com-
munications, vol. 48, no. 2, pp. 181–184, 2000.

[6] Z.-Q. Luo, “An isotropic universal decentralized estimation
scheme for a bandwidth constrained ad hoc sensor network,”
Selected Areas in Communications, IEEE Journal on, vol. 23,
no. 4, pp. 735–744, April 2005.

[7] S. Kar, H. Chen, and P. K. Varshney, “Optimal identical
binary quantizer design for distributed estimation,” Signal
Processing, IEEE Transactions on, vol. 60, no. 7, pp. 3896–
3901, 2012.

[8] A. Vempaty, H. He, B. Chen, and P. Varshney, “On quantizer
design for distributed bayesian estimation in sensor networks,”
Signal Processing, IEEE Transactions on, vol. 62, no. 20, pp.
5359–5369, Oct 2014.

[9] S. M. Kay, “Fundamentals of statistical signal processing,
volume i: Estimation theory (v. 1),” in Technometrics, 1995,
no. 37.

[10] H. L. Van Trees, Detection, estimation, and modulation the-
ory. John Wiley & Sons, 2004.

[11] O. Dabeer and E. Masry, “Multivariate signal parameter esti-
mation under dependent noise from 1-bit dithered quantized
data,” Information Theory, IEEE Transactions on, vol. 54,
no. 4, pp. 1637–1654, 2008.

[12] A. Ribeiro and G. Giannakis, “Bandwidth-constrained dis-
tributed estimation for wireless sensor networks-part ii: un-
known probability density function,” Signal Processing, IEEE
Transactions on, vol. 54, no. 7, pp. 2784–2796, July 2006.

[13] P. Venkitasubramaniam, L. Tong, and A. Swami, “Quan-
tization for maximin are in distributed estimation,” Signal
Processing, IEEE Transactions on, vol. 55, no. 7, pp. 3596–
3605, July 2007.

[14] X. Li, J. Guo, U. Rogers, and H. Chen, “The performance
limit for distributed bayesian estimation with identical One-
Bit quantizers,” in 2015 IEEE Signal Processing and Signal
Processing Education Workshop (SP/SPE) (SPW2015), Salt
Lake City, USA, Aug. 2015, pp. 331–336.

[15] L. Roberts, “Picture coding using pseudo-random noise,”
Information Theory, IRE Transactions on, vol. 8, no. 2, pp.
145–154, February 1962.

[16] R. Gray and J. Stockham, T.G., “Dithered quantizers,” In-
formation Theory, IEEE Transactions on, vol. 39, no. 3, pp.
805–812, May 1993.

[17] R. Wannamaker, S. Lipshitz, J. Vanderkooy, and J. Wright,
“A theory of nonsubtractive dither,” Signal Processing, IEEE
Transactions on, vol. 48, no. 2, pp. 499–516, Feb 2000.

3715


