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ABSTRACT

Scattered pilot-aided channel estimation in offset QAM-based
filter bank multicarrier (FBMC/OQAM) systems has so far
been only considered for channels of mild frequency selec-
tivity. In more demanding scenarios, the classical auxiliary
pilot (AP) idea has been shown to result in severe error floors.
In this paper, a novel pilot-aided channel estimation method
is developed whichfor the first timeextends the applicability
of the AP idea to highly frequency selective channels. The
development relies on a Taylor series approximation of the
signal model, which is able to accurately and concisely de-
scribe such scenarios. The obtained channel estimate can be
viewed as a linear combination of the outputs of multiple par-
allel analysis filter banks each employing a derivative of the
original prototype filter. The reported simulation resultscor-
roborate the analysis, demonstrating the effectiveness ofthe
proposed method in estimating channels of strong frequency
selectivity.

Index Terms— FBMC/OQAM, channel estimation, aux-
iliary pilots.

1. INTRODUCTION

The increasing demand for wireless services has recently
prompted a renewed interest in spectrally efficient physi-
cal layer techniques [1]. Filterbank multicarrier (FBMC)
modulations are an interesting alternative to cyclic prefix
(CP)-based Orthogonal Frequency Division Multiplexing
(OFDM), mainly because of their improved spectral localiza-
tion (due to a non-rectangular pulse shaping) and also because
of their possibility of suppressing the CP, which greatly im-
proves the bandwidth and power efficiency [2]. Among all
the FBMC modulations, those based on the transmission
of real-valued (offset QAM) symbols (FBMC/OQAM) offer
maximum spectral efficiency while maintaining the subcarrier
orthogonality under frequency flat channel conditions [2, 3].

There exist two different families of training-based chan-
nel estimation methods for FBMC/OQAM: preamble-based [4],
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relying on a preamble of training multicarrier symbols and
aiming at providing an initial channel estimate, and scattered
pilot-based [6, 5], which aim at tracking the channel varia-
tions via pilot symbols scattered in the time-frequency plane.
In both cases, one has to cope with the interference effect that
is intrinsic to FBMC/OQAM and is well known to present
a significant challenge when channels of a non-negligible
frequency selectivity are to be estimated [5]. Although con-
siderable advances in preamble-based estimation of highly
frequency selective channels have been recently reported
(e.g., [5]), the assumption of low frequency selectivity is
crucial in almost all of the scattered pilot-based approaches,
including techniques based on canceling /approximating the
unknown intrinsic interference [7, 15, 16] and those relying
on the so-calledhelp or auxiliary pilot (AP) idea [6] and
variants thereof [8, 9, 10, 11, 14, 17]. The latter consists in
choosing the value of a symbol neighboring the pilot one so
that the interference to the pilot is (almost) null. Constructing
this auxiliary pilot is made possible through the assumption of
the channel frequency response (CFR) being constant in both
frequency and time over the neighborhood of the pilot that
contributes most to the interference [6]. In the presence of
less smooth channel responses, the AP scheme fails to provide
good channel estimates and its performance is characterized
by severe error floors at medium to high signal to noise ratios
(SNR) [5]. Recent efforts in extending the AP idea to more
frequency selective channels include [14], which, however,
still relies on the assumption of a per-subcarrier frequency flat
response, and [12], which is based on a principal component
analysis of the intrinsic interference and relies ona priori
knowledge of the channel second-order statistics to compute
the generalized auxiliary pilots.

In this paper, a simple yet effective approach to general-
izing the AP idea is followed, stemming from the Taylor se-
ries approximation of the received signal around the pilot fre-
quencies and relying on a strong theoretical background for
characterizing channel-induced distortion in FBMC/OQAM
systems [18].

Consider a general FBMC/OQAM transmission scheme
employing2M uniformly spaced subcarriers, where the dif-
ferent filters at the transmitter and receiver are exponentially
modulated versions of two real-valued prototype pulses, de-
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noted asp[n] and q[n], respectively.1 Let these prototypes
have a length of2Mκ samples, withκ being the overlap-
ping factor. Denote byy[k, n] the complex-valued signal at
the output of the analysis filter bank (AFB), corresponding
to thenth multicarrier symbol and thekth subcarrier (k =
0, 1, . . . , 2M − 1). Under perfect channel conditions,y[k, n]
can be expressed as a bidimensional convolution of the trans-
mitted real-valued symbolss [m,n] with the pulse-specific
ambiguity functionsϕk,n [m, ℓ], namely

y [k, n] =
∑

m,ℓ

s [(k −m)2M , n− ℓ]ϕk,n [m, ℓ] , (1)

where(·)2M stands for modulo-2M reduction. The ambi-
guity functionsϕk,n [m, ℓ] generally depend on the parity of
the valuesk, n, and take on non-zero values only in the sup-
port setS = {(m, ℓ) : 0 ≤ m < 2M,−2κ < ℓ < 2κ}, un-
derstood as positions in the time-frequency plane.

If the prototype pulsesp[n] andq[n] are designed to guar-
antee perfect reconstruction (PR) of the transmitted signal,
the ambiguity functions can be expressed asϕk,n [m, ℓ] =
αk,n [m, ℓ] + jβk,n [m, ℓ] , whereαk,n [m, ℓ] = δk,mδn,ℓ and
βk,n [m, ℓ] is real valued, and the received signal takes the
form

y [k, n] = s [k, n] +

+ j
∑

(m,ℓ)∈S\{(k,n)}

s [(k −m)2M , n− ℓ]βk,n [m, ℓ] , (2)

where the noise term is omitted for the time being for the sake
of simplicity of presentation. Clearly,Re [y [k, n]] = s [k, n],
as expected under PR conditions.

In the presence of a frequency selective channel, the signal
model in (2) is no longer valid. However, if the channel is
sufficiently flat around thekth subcarrier and locally time-
invariant, one can approximate the received signal as

z [k, n] ≃ H(ωk)y [k, n] (3)

whereH(ω) is the CFR andωk is thekth subcarrier radial
frequency. Observe that even ifs [k, n] has a predefined non-
zero value at the transmitter,y [k, n] is generally unknown due
to the presence of the imaginary component in (2), which in
turn depends on the neighboringunknowntransmitted sym-
bols. The idea behind the AP technique is to fix the value of
an additional symbol inS, usuallys[k, n ± 1], to guarantee
that the second (purely imaginary) term of (2) is zero. Then
y [k, n] = s [k, n], which allows one to estimate the CFR at
ωk in a manner analogous to OFDM, namely

Ĥ(ωk) =
z [k, n]

s [k, n]
.

This operation can be repeated across the spectrum by in-
serting similar pairs of pilots atK distinct subcarriers, say

1This setting also covers the so-called biorthogonal frequency division
multiplexing (BFDM/OQAM) [2]. Orthogonal FBMC/OQAM (alsoknown
as OFDM/OQAM) results forp = q.

ω1, ω2, . . . , ωK . Denoting byH theK × 1 vector that con-
tains the estimated CFR valueŝH(ωk) and assuming that the
channel has a finite impulse responseh ∈ CLh×1 of length
Lh, one may writeH =

√
2MGHh, whereG is a selection

of the2M -point inverse DFT matrix corresponding to the up-
perLh rows and theK columns associated with theK pilot
subcarriers. Assuming thatK ≥ Lh, one should be able to
retrieveh from the above equation, and then obtain the CFR
at any subcarrier by a simple DFT. However, when the chan-
nel exhibits strong frequency selectivity, the approximation
in (3) is no longer valid, and this fact results in a significant
modeling error that severely distorts the channel estimate.

2. THE PROPOSED CHANNEL ESTIMATOR

In this section, the above channel estimation procedure will be
generalized to the situation where the channel presents strong
frequency selectivity. The approach followed is based on a
Taylor series expansion of the received signal under the as-
sumption of an asymptotically large number of subcarriers
(M → ∞), which nevertheless turns out to be a very accurate
assumption even for moderate values ofM (cf. Section 5).
The prototype filters will be assumed to have been obtained
through discretizing a continuous-time waveform (see [18]
for further details) and to be PR-compliant. The correspond-
ing analog waveform is assumed to beR + 1 times continu-
ously differentiable for some integerR and both the function
itself and its firstR+1 derivatives null out at the extremes of
its support.

Under the above assumptions, one can defineq(r)[n] as
the sampled version of therth derivative of the analog wave-
form. Denote then byy(r)[k, n] the received signal when the
AFB employsq(r)[n] as its prototype. As previously, the cor-
responding received signal in the presence of a frequency se-
lective channelH(ω) will be denoted byz(r)[k, n]. It was
proved in [18] that whenM → ∞ the received signalz [k, n]
can be expressed as

z [k, n] =

R
∑

r=0

(− j)r

r! (2M)
rH

(r)(ωk)y
(r)[k, n] +O

(

1

MR+1

)

whereH(r)(ω) is therth derivative of the CFR. Clearly, the
more frequency selective –relatively to the filter bank size –
the channel is, the largerR needs to be to keep the modeling
error small enough. It is of interest to note that (3) corre-
sponds to the caseR = 0 and can therefore be obtained as a
special case of the above formulation. More generally, con-
sidering the signals received from themth prototype pulse
derivative, one can still apply the result in [18] to write

z(m) [k, n]

(2M)
m =

R−m
∑

r=0

(− j)
r

r!
H(r)(ωk)

y(r+m)[k, n]

(2M)
r+m

+O

(

1

MR+1

)

(4)
for m = 0, 1, . . . , R. This gives a total ofR + 1 equations
in R + 1 unknowns (H(r)(ωk), r = 0, 1, . . . , R), assuming
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that the values ofy(r)[k, n] are known. As in (2), the latter
will generally depend on multiple transmitted symbolss[m, ℓ]
through a convolution operation, namely

y(r)[k, n] =
∑

(m,ℓ)∈S

s [(k −m)2M , n− ℓ]ϕ
(r)
k,n [m, ℓ] ,

whereϕ(r)
k,n [m, ℓ] is the modulation ambiguity function ob-

tained when the AFB prototype is replaced by itsrth deriva-
tive. It will be shown in the next section that, by fixing the
values of2(R+1) symbols around the(k, n) frequency-time
position, one can guarantee that the samplesy(r)[k, n] will
take on a predefined value for everyr = 0, 1, . . . , R. Assume
that these values are fixed, and let

ξ
(r)
k,n =

y(r)[k, n]

(2M)
r (5)

One can then re-write (4) in matrix form

zk = ΨkHk +O(M−(R+1)) (6)

whereΨk stands for a Hankel upper triangular matrix with

first row
[

ξ
(0)
k,n, ξ

(1)
k,n, . . . , ξ

(R)
k,n

]

andzk, Hk are column(R +

1)-vectors with(r + 1)st entries equal to

{zk}r+1 = (2M)
−r

z(r) [k, n] , {Hk}r+1 =
(− j)

r

r!
H(r)(ωk).

Moreover,Hk =
(

IR+1 ⊗ gH
k

)

ΥRh, where⊗ is the Kro-
necker product,gk is thekth column of the matrixG,

ΥR =
√
2M

[

ILh
−Λ 1

2!Λ
2 · · · (−1)R

R! ΛR

]T

(7)

andΛ = diag(0, 1, 2, . . . , Lh − 1).
The same formulation can be applied toK distinct sub-

carriersωk so that, by denotingz =
[

zT1 , . . . , z
T
K

]T
, one can

finally write (obviating the error term inO(M−(R+1)))

z = Gh, G =







Ψ1 ⊗ gH
1

...
ΨK ⊗ gH

K






ΥR (8)

Now, the system in (8) is solvable as long as the(R+ 1)K×
Lh matrixG has full column rank. WithK ≥ Lh the matrix
is certainly tall. Assuming moreover that the matricesΨk are
designed to have full rank, the following estimation is possi-
ble

ĥ = G
#z, (9)

where(·)# stands for the Moore-Penrose pseudoinverse.

3. PILOT CONSTRUCTION

A crucial step in the above channel estimation procedure is
the fact that some pilots need to be inserted in order to guar-
antee that the signal response under ideal channel conditions
takes on a predefined value, namelyy(r)[k, n] = (2M)r ξ

(r)
k,n.

To ensure this, assume that a total ofK pilot clusters are in-
serted, each cluster consisting of a total of2(R + 1) pilots,
and that the pilots corresponding to thekth cluster are lo-
cated around the(k, n) frequency-time point. For eachk,
1 ≤ k ≤ K, let Ik be the set of2 (R+ 1) different pilot

positions corresponding to thekth cluster and assume that the
setsIk, k = 1, 2, . . . ,K, are disjoint. By generalizing (1) to
the reception with therth prototype derivative, one can write
(for eachr and each(k, n) point)

∑

(m,ℓ)∈I

s [m, ℓ]ϕ
(r)
k,n [(k −m)2M , n− ℓ] = x(r) [k, n] ,

(10)
where

x(r) [k, n] = (2M)
r
ξ
(r)
k,n

−
∑

(m,ℓ)∈S\I

s [m, ℓ]ϕ
(r)
k,n [(k −m)2M , n− ℓ]

andI = I1∪I2∪· · ·∪IK . Observe thatx(r) [k, n] is known

onceξ(r)k,n and the values of the information symbols, namely
s [m, ℓ] for (m, ℓ) /∈ I, have been fixed.

In order to obtain an equation for the pilot symbols,
eq. (10) will be expressed in matrix form. Defineφ(r)

I [k, n]

andφ(r)
S\I [k, n] as two row vectors of dimension|I| and|S\I|,

which contain the values ofϕ(r)
k,n [(k −m)2M , n− ℓ] for

(m, ℓ) ∈ I and(m, ℓ) ∈ S\I respectively. IfsI andsS\I

denote two associated column vectors of the same dimen-
sion containing the symbolss [m, ℓ] for (m, ℓ) ∈ I and
(m, ℓ) ∈ S\I respectively, one can re-write (10) in com-

pact form asφ(r)
I [k, n] sI = x(r) [k, n], wherex(r) [k, n] =

(2M)
r
ξ
(r)
k,n− φ

(r)
S\I [k, n] sS\I . Now, defineΦI [k, n] as

an (R+ 1) × |I| matrix formed by stacking the row vec-

tors φ
(r)
I [k, n], r = 0, 1, . . . , R, on top of one another

and take Φ̄I [k, n] =
[

ReT ΦI [k, n] , Im
T ΦI [k, n]

]T
,

with dimensions2 (R+ 1) × |I|. Finally, introducing the

matrix Φ̄I=
[

Φ̄I [1, n]
T
, · · · , Φ̄I [K,n]

T
]T

of dimensions

2K (R+ 1)× |I|, eq. (10) can be written as

Φ̄IsI = ξ̄ − Φ̄S\IsS\I , (11)

whereξ̄ =
[

ξ̄
T

1 , . . . , ξ̄
T

K

]T

, ξ̄k =
[

ReT ξk, Im
T ξk

]T
, ξk =

[

ξ
(0)
k,n, . . . , (2M)

R
ξ
(R)
k,n

]T

. Observing the dimensions of the

matrixΦ̄I , it can be readily seen that the problem is solvable
as long as the total number of pilots is larger than or equal to
2K (R+ 1), which corresponds to2 (R+ 1) pilots per each
of the K clusters. Note that this reduces to two pilots per
cluster in the case ofR = 0, which amounts to the classical
AP configuration. By properly choosing the pilot position set
I, one can typically guarantee that the matrixΦ̄I will have
full rank and the system in (11) will be solvable in terms of
the pilot valuessI .

It is easy to see from (11) that the statistical properties
of the inserted pilotssI will generally be substantially differ-
ent from those of the transmitted information symbolssS\I .
Depending on the ambiguity function, this may imply that the
inserted pilots need to have higher power than the information
symbols. This is a well known weakness of the AP scheme
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and a number of approaches were recently proposed to its mit-
igation [14, 16]. In the strongly frequency selective scenario
studied here, this question remains for future investigation.

4. PERFORMANCE CHARACTERIZATION

In practice, the system equation in (8) is not exact, due to the
presence of the error term in (4), together with the noise in
the observations that has so far been neglected. One can thus
write

znoisy = Gh+ n+w, (12)
wheren andw contain the contributions from the background
noise and the model distortion error, respectively. Assume,
as usual, that the information symbolssS\I are i.i.d. random
variables with zero mean and variance 1/2. Furthermore, letn

andw be written as the concatenation ofK (R + 1)-vectors,
saynk andwk, each one of them associated with the noise
and distortion, respectively, at a particular pilot tone,ωk. In
what follows, a statistical characterization of these two ran-
dom vectors is provided, which trivially leads to a character-
ization of the statistical behavior of the estimator in (9),by a
simple left multiplication byG#.

4.1. Modeling Error

Using again the results in [18], one can further refine (6) by
considering an additional term in the Taylor series expansion,
namely

zk = ΨkHk +
y(R+1) [k, n]

(2M)R+1
JR+1uk +O(M−(R+2)),

where JR+1 is the exchange matrix of orderR + 1 and
uk =

(

IR+1 ⊗ gH
k

)

Υ̃Rh, with Υ̃R being defined as in (7)
but along the index set{1, 2, . . . , R+ 1}.

On the other hand, using the structure of the pilots above,
one can write

y(R+1) [k, n] = φ
(R+1)
I [k, n] Φ̄−1

I ξ̄

+
(

φ
(R+1)
S\I [k, n]− φ

(R+1)
I [k, n] Φ̄−1

I Φ̄S\I

)

sS\I (13)

Using this, it is readily seen that the model distortion vec-
tor w in (12) can be written (up to an error term of order
O(M−(R+2))) as the concatenation ofK non-circular ran-
dom vectorswk, with mean and cross-covariance given by

E [wk] = γkJR+1uk,

cov (wk,wm) = δk,mJR+1uku
H
mJR+1,

whereγk is the first term in (13) andδk,m = ϑkϑ
H
m with ϑk

being the row vector multiplyingsS\I in (13).

4.2. Noise effect

Assume now that the receiver is contaminated with circu-
larly symmetric additive complex noise with zero mean and
varianceσ2. It can readily be shown [18] that the observed
noise vector at the output of the AFB,n, is circularly sym-
metric noise having zero mean and covariance components
E
[

nkn
H
m

]

= Ck,m
n , with entries

{

Ck,m
n

}

r1+1,r2+1
= 2σ2

{

ΦFHDr1,r2FΦ
∗
}

ζ(k),ζ(m)

Here,ζ (k) provides the subcarrier index associated toωk, F
is the DFT matrix of order2M , Φ is a diagonal matrix with
mth entry equal toexp

(

−jπM+1
2M (m− 1)

)

, 1 ≤ m ≤ 2M ,
and

Dr1,r2 = diag

(

J2M

κ
∑

ℓ=1

[

q
(r1)
ℓ ⊙ q

(r2)
ℓ

]

)

with q
(r)
ℓ =

[

q(r)[2M (ℓ− 1)], . . . , q(r)[2Mℓ− 1]
]T

and⊙
denoting the Hadamard product.

5. NUMERICAL EVALUATION

In the simulations, an FBMC/OQAM system of2M = 128
subcarriers separated by 30 MHz has been considered, em-
ploying the PHYDYAS prototype filter [19] withκ = 3,
at both the transmit and receive sides. The pilots were dis-
tributed in 63, 32 and 21 equispaced clusters (of 2, 4 and
6 pilots each), forR = 0, 1, 2 respectively, so that the total
number of pilots was approximately kept constant regard-
less ofR. The proposed channel estimation method was
tested over 100 channels obeying the Extended Typical Urban
(ETU) model [20]. Fig. 1 plots both the simulated (solid line)
and the theoretical (dotted line) mean squared error (MSE)
as a function of the SNR, for different values ofR. Observe

0 5 10 15 20 25 30 35 40 45
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R=0 (sims)

R=1 (sims)

R=2(sims)

R=0 (theory)

R=1 (theory)

R=2(theory)

Fig. 1. Simulated and analytical MSE of the proposed channel
estimation method.

that asR increases, the proposed method effectively lowers
the MSE floor due to the unmodeled channel frequency selec-
tivity. Conversely, the behavior at low SNR values, namely
where the noise is strong enough to prevail over the intrinsic
interference effect, is slightly penalized for increasingR, an
effect that is caused by the corresponding reduction in the
number of pilot clusters. Observe also that for each value of
SNR there is an optimumR (and hence an optimum pilot dis-
tribution in clusters) that minimizes the MSE. At low SNR,
it is preferable to distribute the pilots evenly across the spec-
trum, whereas at higher SNR values it is better to concentrate
them into a smaller number of clusters.
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