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ABSTRACT

In this paper, a distributed compressed estimation (DCE) scheme
is presented based on a distributed recursive-least squares algorith-
m for sparse signals and systems along with a sensing matrix de-
sign procedure based on compressive sensing techniques. The D-
CE scheme consists of compression and decompression modules in-
spired by compressive sensing to perform distributed compressed
estimation. A design procedure is developed under the DCE frame-
work and a novel algorithm is developed to optimize the sensing
matrix, which can further improve the performance of the proposed
DCE and distributed adaptive algorithms. Simulations for a wire-
less sensor network show the advantages of the proposed scheme
and algorithm in terms of convergence rate and mean square error
performance.

Index Terms— Distributed compressed estimation, compres-
sive sensing, sensing matrix design, sensor networks.

1. INTRODUCTION

Distributed signal processing techniques extract information from
data collected at nodes that are distributed over a geographic area [1].
With these distributed approaches, instead of generating an estimate
at one node, an improved estimate is obtained by a specific node that
collects and processes the local information from a set of neighbor
nodes and then combines the information provided by the neigh-
bor nodes with its local estimate. In many scenarios, the unknown
parameter vector to be estimated can be considered as a sparse vec-
tor that contains only a few nonzero coefficients. Many algorithms
have been developed for sparse signal estimation [2, 3, 4, 5]. How-
ever, these techniques are designed with the full dimension of the
observed data, which increases the computational cost, slows down
the convergence rate and degrades mean square error (MSE) perfor-
mance.

Compressive sensing (CS) [6, 7] is an emerging research area in
the signal processing community. It has been successfully applied
to diverse fields, such as image processing [8], wireless communi-
cations [9] and MIMO radar [10]. The application of CS to wireless
sensor networks (WSNs) has been recently investigated in [9], [11]
and [12]. In [11], a greedy algorithm called precognition matching
pursuit was developed for CS and used at sensors and the fusion cen-
ter to achieve fast reconstruction. However, the sensors are assumed
to capture the target signal perfectly with only measurement noise.
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A sparse model that allows the use of CS for the online recovery of
large data sets in WSNs was proposed in [13], but it assumes that
the sensor measurements could be gathered directly, without an es-
timation procedure. In Xu and de Lamare [12] compressed transmit
strategies and estimation techniques were considered using a dis-
tributed compressed estimation (DCE) scheme along with stochastic
gradient algorithms for parameter estimation and adjustment of the
sensing matrix.

In CS problems, we consider v € with vy, being its kth
element. The zero-norm ||v||o is defined to count the number of non-
zero elements in v. For a matrix ® € RP*M | the spark is defined
as the smallest number of columns in & that are linearly dependent.
It has been shown in [14] that any S-sparse vector w can be exactly
recovered from the projection @ via

%NIXI

nl)in lwllo st @=Pw (1)
which can be solved using orthogonal matching pursuit (OMP) [15]
as long as the spark of the sensing matrix ® is greater than 2S.
Moreover, it has been pointed out that a larger spark of ® leads to a
larger signal space among which the sparse vector can be exactly re-
covered. However, calculating the spark of a matrix is very complex.
Alternative properties that guarantee the recovery are then required
for designing a suitable sensing matrix ®.
The mutual coherence of ®, which is defined as

|7 ¢,

max _—
1<i2i <L || @il 2| sl 2

can be employed to provide recovery guarantees [14], [16]. Note
that 7 denotes the transpose operator and ¢y, is the kth atom of ®.
As shown in [14], an S-sparse signal can be successfully recovered
from the measurement if

nw(®) £ ()

S <1/2[14p(®)] ©)

The system will allow a wider set of candidate signals to be exactly
recovered with a smaller i (®).

In this work, a distributed CS-based approach based on the DCE
scheme with a distributed recursive least-squares (DRLS) algorith-
m that incorporates compression and decompression modules along
with a novel sensing matrix design is developed for distributed esti-
mation problems. In the compression module, the unknown param-
eter wo is compressed into a lower dimension followed by a DRLS
algorithm performed in a compressed dimension. This approach re-
duces the required bandwidth and improves the MSE performance
with a faster convergence rate. Then the decompression module re-
covers the compressed estimator into its original dimension using
the OMP algorithm [15]. A novel sensing matrix design approach is
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proposed to minimize the mutual coherence and is incorporated into
the DCE scheme. With a closed-form solution, the designed sensing
matrix can be pre-calculated and does not require any computational
load to update its parameter during the operation of the system. Sim-
ulation results illustrate the performance of the proposed scheme and
algorithm against existing techniques.

This paper is organized as follows. Section 2 describes the sys-
tem model and the problem statement. In Section 3, we review the
DCE scheme and its operation. The proposed sensing matrix design
is presented in Section 4. Simulation results are provided in Section
5, whereas the conclusions are given in Section 6.

2. SYSTEM MODEL AND PROBLEM STATEMENT

Let us consider a WSN with N nodes in a partially connected topol-
ogy which employs a diffusion protocol. A partially connected net-
work means that nodes can exchange information only with their
neighbors as determined by the connectivity topology. At every time
instant ¢, the scalar measurement dy, (%) received by the sensor at each
node k can be expressed as

di(i) = wg' k(i) + i), i=1,2,...1, @

where @ (i) is the M-dimensional input signal vector, ny (%) is the
additive noise at each node with zero mean and variance afly k- The
M -dimensional unknown parameter vector wq should be estimated
by the network in a distributed fashion. We assume that wy is a
sparse vector with only .S < M non-zero coefficients. The aim of
such a network is to estimate the parameter vector that minimizes
the cost function given by

N

J(w) =3 N H{|dk () — w Tz ()}, )

k=1j=1

where ) is a positive real-valued forgetting factor that is less than
one. Distributed estimation of wy is appealing because it can bring
robustness against noisy measurements, reduce complexity and com-
munication overheads, and improve performance. In order to ob-
tain a distributed estimator, the cost-effective adapt-then—combine
(ATC) diffusion strategy can be employed [1], which firstly updates
the local estimators (i) with wy (i), and then computes the im-
proved estimator as

wr(i+1) = Z crp(i), 6)

lEN},

where N, indicates the set of neighbors for node k, 1y (i) is the
local estimator of node k, |[Ny| denotes the cardinality of N and
¢ 1s the combination coefficient, which is calculated with respect
to the Metropolis rule

if k # [ are linked
for k and [ are not linked e
Ckl, fork =1

Cpl = ——
max ([N [,[N])?
cr =0,
ckr = 1 — Z
LeN /k
and should satisfy >, cx = 1,1 € N, Vk. Existing distributed
sparsity-aware estimation strategies, e.g., [2], [4] and [5], are de-
signed using the full dimension signal space. In order to improve the
MSE performance, reduce the required bandwidth and optimize the
distributed processing, the DCE scheme based on CS techniques has
been developed for a WSN [12]. The problem we are interested in
here is how to design and incorporate an optimized sensing matrix
computed offline into the DCE scheme.
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3. PROPOSED DCE WITH OPTIMIZED SENSING MATRIX
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Fig. 1. Proposed Compressive Sensing Modules

In this section, the proposed DCE scheme with optimized sens-
ing matrix will be detailed. As shown in Fig. 1, the proposed scheme
employs compression and decompression modules along with an op-
timized sensing matrix inspired by CS techniques to perform dis-
tributed compressed estimation. In the proposed scheme, at each
node, the sensor first observes the M x 1 vector x (i), then the com-
pressed version D x 1 vector Z (%) is obtained with a D x M sensing
matrix. In what follows, all D—dimensional quantities are designat-
ed with an overbar. By introducing the CS based transformation, the
estimation of wq will be carried out in the compressed domain using
a DRLS algorithm. In other words, the proposed scheme estimates
Wo instead of wq; note that D is assumed much smaller than M. The
decompression module employs a D x M sensing matrix ¢ and a
reconstruction algorithm to obtain an estimate of wg. One advan-
tage for the DCE scheme with optimal sensing matrix is that fewer
parameters need to be transmitted between neighbor nodes and the
sensing matrix is fixed during the transmission which will reduce the
computational load in the nodes.

We start the description of the proposed DCE scheme based on
a DRLS algorithm with optimized sensing matrix with the scalar
measurement dy (7) given by

di (i) = @ & (3) + ni(d), i=1,2,...,1, ®)

where @o = ®rwo and & () is the D x 1 input signal vector. This
operation is depicted in Fig. 1 as the compression module.
The DCE scheme with a DRLS algorithm consists of three steps:

e Adaptation of local estimator

In the adaptation step, at each time instant ¢=1,2, . . . L each node
k=1,2,...,N, generates a local compressed estimator )y, (¢) through

Pr(i) = @i — 1) + Ki(i)e (i), ©)
where ey (i) = di(i) — @ (i — 1)&(4) is the error signal, the
Rt (i—Day (i)
el ()R, (i-1)@ (i)
the update of the inverse of the covariance matrix is obtained by
R'(i) = 1 [R;'(i—1)— Kip(i)@y ()R, " (i —1)], where

R;'(0) = I/§ is the initialization.

e Information exchange

Kalman gain is given by Ky (i) = and

In the DCE scheme, only the local compressed estimator )y, (7) will
be transmitted between node & and all its neighbor nodes.

e Combination for an improved estimator



At each time instant ¢=1,2, . . . , I, the combination step starts
after the information exchange is finished. Each node will combine
the local compressed estimators from its neighbor nodes and itself

through
Z crbi (i),

lEN}

wp(i+1) = (10)
to compute the updated compressed estimator cwy, (7 + 1).

After the final iteration I, each node will employ the OMP re-
construction strategy to generate the decompressed estimator wy (I).
Other reconstruction algorithms can also be used. The decompres-
sion module shown in Fig. 1 illustrates the details. In summary, dur-
ing the DCE procedure, only the local compressed estimator )y (i)
will be transmitted over the network resulting in a reduction of the
number of parameters to be transmitted from M to D.

4. SENSING MATRIX OPTIMIZATION

In this section, a novel sensing matrix design that minimizes the mu-
tual coherence of the sensing matrix is proposed to further improve
the performance of the DCE scheme. As the sensing matrix is de-
signed for some matrix properties, it can be pre-calculated and re-
mains fixed during the operation of the system to save computational
complexity at each node.

Let us denote G = &7 & = {g;;} and let S. be the diagonal

matrix whose kth element is given by g;k for k=1,2,...,M.
The Gram matrix of & = ®S., denoted as G = {gL J} is then
normalized such that gpr, = 1, Vk. Therefore, we have u(®) =
max;; |gi;j|. This means that (@) measures the maximum linear
dependency possibly achieved by any two columns of the matrix ®.
It has been shown in [17] that for a matrix ® of dimensions D x M,
1(P) is bounded by

< u(®) <1, an

with u being the Welch bound. Furthermore, the author of [16]
defined another indicator that is more related to the matrix perfor-
mance, namely the averaged mutual coherence:

2oV (1,)€8ay 19

av @ é b
Haw(®) ..

12

where Sov 2 {(4,7) : B < |gsj| < 1}, with 0 < 7 < 1 a given
value and N, is the number of elements in Sq. .

As seen from the relationship between sparsity and mutual co-
herence (3), it is natural for us to design the sensing matrix € such
that the absolute values of the off-diagonal elements of the corre-
sponding Gram matrix are as small as possible, that is

min |7 ® — Lu||%, (13)
with I'ns denoting the identity matrix of dimension M and || - || 7 the
Frobenius norm. In [18] and [19], the closed-form solutions to (13)

were derived as
® = U[Ip 0)V7, (14)

where both U and V are arbitrary orthonormal matrices that leave
us space to further improve the performance of ®.

However, for a matrix of dimension D x M, the ideal Grammian
I,/ is unattainable. As indicated in [17] - [19], an equiangular tight
frame (ETF) can achieve the minimal mutual coherence which is
the Welch bound defined in (11). It is this fact that motivates us to

3693

further design the sensing matrix to approximate an ETF under the
constraint of (14) with regard to orthonormal matrices U and V/, that
is

UlIp o)V,

min @ — ®ers|3 st @ = (15)

with ®.;; denoting the target ETF. According to [20] and [21], we
construct a relaxed ETF as the target frame in the following way:

e With an initial ®, obtain the matrix ® by normalizing the
columns of ®;

e Calculate the Gram matrix G = &7 & = {g;;} and then
apply the following shrinking operation

o gijv 7’#]7 |g7«l‘§77
G(i,5) =9 sgnlgijln, i#34, gl >n ,  (16)
1, i=j

with sgn[-] being the sign function and 7 a shrinking thresh-
old to bound the absolute values of the off-diagonal elements,
producing G;

e Apply the singular value decomposition (SVD) to G 1o set
the matrix rank to D, obtaining G, and then compute a & €
RP*M guch that <I>T<I> G;

e Find a new & that is the nearest M/ D-tight frame to ®, ac-
cording to ® = /M/D(®&7)"1/2.
Repeat the above procedures several times and we can get a relaxed
ETF ®.; as the target.
Now the design problem can be stated as follows:

|UIp 0)VT — @y, (A7)

min
U€ESy(D), VES,(M)

where S, (V) denotes the set of N x N orthonormal matrices. A
popular method to handle this multivariate problem is alternating
minimization [22, 23, 24, 25], i.e., updating U and V' alternately.
To this end, let us define the following cost function:

fU,V) = U 0V — .||
= |UF — &%
|[VE — )%,

where
FR2Ip0vT, R, 0’U”

are only related to V' and U, respectively. So the alternating mini-
mization procedure can be listed as follows:

o Step I: Fix V, update U with

i UF — ®./|5
i U F s llw

e Step II: Fix U, update V' with
IVF — @], |%

VESo(A{)

Iterating Step I and Step II results in our designed sensing matrix.
Considering the general expression:

min_ {|XY - Z|% £ o}.

(18)
XE€SH(N)

Denote tr[-] as the trace operator, then

o=tr[Y7Y]+tr[2" Z] - 2tr[XY Z7).



Hence

(18) & max tr[XW] st. W=YZ".
XESH(N)

o

Let W = U, X, V,/ bethe SVD of W, then
tr[XW)] = tr[S.,V,] XU,] £ tr[SuR).

Note that R = V,] XU,, = {r;;} is still orthonormal. Thus, we

have
N N
tT[ZwR] = Z OkLTkk S Z Ok
k=1 k=1

in which equality holds if = 1, Vk, i.e., R is the identity matrix,
which leads to
X =V,U/]. (19)

With the above conclusion, we can solve (17) by optimizing U and
V in an alternating fashion, resulting in the solution of (15).

5. SIMULATIONS

In this section, the proposed DCE scheme with a DRLS algorithm
and the sensing matrix optimization algorithm are considered in a
WSN application, where a partially connected network with N =20
nodes is considered. The contrasts are denoted as least mean square
(LMS)-RSM, LMS-OSM, RLS-RSM, and RLS-OSM for the cases
that represent the combinations of LMS with random sensing matrix
(which is also the main idea of [12]), LMS with optimized sensing
matrix, RLS with random sensing matrix, and RLS with optimized
sensing matrix, respectively.

We set M = 50, D = 10, and S = 3. The variance of the
noise is 0.001, while the variance of the input signal is 1. For the
ETF construction method, 7 = 1.5u. The numbers of iterations for
constructing ETF, alternately updating U and V' are both fixed to
100. The MSE performance and the distance between the unknown
parameter vector wq and its estimate are shown for comparison. All
results are obtained by averaging 1000 independent runs.

30,

:
—6— LMS-RSM

LMS-0SM
20¢ —+— RLS-RSM [
—¥#— RLS-OSM

% 100 200 300 400 500
Times i
Fig. 2. MSE versus time instant with D = 10. The step-size for LMS is
po = 0.45, the parameters for RLS are § = 0.1 and A = 0.9.
As shown in Fig. 2, the MSE performance of the proposed D-
CE with different sensing matrices and local estimator updating al-
gorithms are compared. The RLS versions outperform the LMS
versions while the proposed sensing matrix design provides DCE
a faster convergence when compared with DCE without the sensing
matrix optimization.
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100

80 Gram of random sensing matrix B

with 1=0.8629, 1, =0.4420

100 T T T T
80 Gram of designed sensing matrix
60 with u=0.4379, uaV:O.3896 B
40 i

20 q

0 I I
0 0.2 0.4 0.6 0.8 1

Fig. 3. Gram matrices of different sensing matrices with D = 10.

The corresponding Gram matrices of random sensing matrix and
designed sensing matrix are depicted in Fig. 3. We set i = p when
calculating f4,. It can be found that the designed sensing matrix has
a smaller mutual coherence and a smaller average mutual coherence.
These properties lead to a better reconstruction and hence improve
the performance of the system.

12

—©— LMS-RSM

LMS-0OSM

10| ==——f=— RLS-RSM
—— RLS-OSM

Distance

3 5 6 7

4
s
Fig. 4. Distance between the w and its estimate versus sparsity S.

In the last simulation, the same setting as to obtain Fig. 2 is em-
ployed except for the sparsity S. Fig. 4 shows the distance between
the unknown parameter vector wo and its estimate versus sparsity
S. The proposed sensing matrix introduces a shorter distance than
the random sensing matrix, while in this scenario, LMS and RLS
adaptive algorithms for updating the local estimator achieve similar
performance.

6. CONCLUSIONS

A novel DCE scheme and adaptive RLS version for calculating lo-
cal estimators have been proposed for sparse parameter vector es-
timation based on CS techniques. In addition, the sensing matrix
has been optimized to minimize the mutual coherence. In the D-
CE scheme, the estimation procedure is performed in a compressed
dimension. The results for a WSN application show that the DCE
scheme outperforms existing strategies in terms of convergence rate,
reduced bandwidth and MSE performance.
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