
SUBSPACE-BASED ADAPTIVE WIDELY LINEAR BLIND CHANNEL ESTIMATION FOR
CONSTRAINED MINIMUM VARIANCE CDMA RECEIVER

Nuan Song⋄, Vimal Radhakrishnan§, Rodrigo C. de Lamare∗, and Martin Haardt§

⋄ Shanghai Radio Equipment Research Institute, Shanghai, China
§ Communications Research Laboratory, Ilmenau University of Technology, Ilmenau, Germany

∗ CETUC, PUC-Rio, Brazil& Communications Research Group, Department of Electronics, University of York, UK

ABSTRACT

We propose a subspace-based Widely Linear (WL) blind channel
estimation scheme based on the iterative power method for the
WL constrained minimum variance Code Division Multiple Access
(CDMA) receiver. The novel technique approximates the noise sub-
space by using a matrix power and the WL processing fully exploits
the second-order non-circularity of the signal. Two adaptive recur-
sive least squares algorithms are developed using power iterations,
which completely avoid the computationally intensive singular value
decomposition. Simulation results show an improved performance
of the proposed algorithms in terms of convergence and complexity
as compared to their linear counterparts.

Index Terms— widely linear, non-circular, subspace, blind
channel estimation, power method, constrained minimum variance

1. INTRODUCTION

In dynamic environments which experience Intra-/Inter-Symbol In-
terference (ISI) and Multi-User Interference (MUI), blind channel
estimation schemes are quite attractive, since no transmission of
the training symbols is required. Conventional subspace-based ap-
proaches to blind channel estimation mostly rely on the Singular
Value Decomposition (SVD) to obtain the signal or noise subspace
[1, 2, 3]. When a large processing gain of the system is applied,
SVD-based methods for a large matrix, by contrast, will exhibit a
very high computational complexity. Furthermore, these techniques
also require the estimate of the subspace rank, e.g.,by using infor-
mation theoretic criteria such as the Akaike Information Criterion
(AIC) or Minimum Description Length (MDL) criterion [4]. Erro-
neous rank estimates will also lead toa drastic performance degra-
dation. Prior work in [5, 6, 7, 8, 9] proposed to approximate the
noise subspace by replacing the SVD with a matrix power, which
simplifies the optimization problem, but the channel estimate is still
obtained by computing the SVD. An iterative power technique [10]
has been proposed in [11], which completely eliminates the SVD and
results in a substantial reduction of the computational complexity.

Channel estimation techniques often require the second-order
statistics of the observation data vectorr, which can be fully de-
scribed by its covariance matrixR = E{rrH} and its pseudo-
covariance matrixŘ = E

{

rrT
}

. In the situations whenr is
second-order non-circular1, i.e., Ř 6= 0, Widely Linear (WL) pro-
cessing can improve the performance as compared to the conven-
tional linear approaches [12, 13, 14, 15, 16].

1Non-circularity mentioned in this paper is constraint to thesecond-order
case.

To enhance the estimation performance, several measurements
of thereceivedsymbols are usually obtained at the receiver by means
of oversampling or several sensors [5]. On the contrary, “virtual”
measurements can be constructed by WL processing, which saves
the hardware resources of the receiver front-end and more impor-
tantly leads to a significant performance gain for non-circular sig-
nals. Thus, WL subspace-based blind channel estimation becomes
quite promising. Another advantage is that in the WL case, the in-
herent phase ambiguity that exists in conventional linear subspace
methods, reduces to a sign ambiguity [17, 18]. Existing WL blind
channel estimation schemes are based ontheSVD [19, 20, 17, 18].
The complexity problem becomes more severe in the WL case, since
both the original received signalr and its complex conjugater∗ have
to be considered as measurements.

In this paper, we propose a new subspace-based WL blind chan-
nel estimation scheme based on the iterative power technique for
a WL Constrained Minimum Variance (WL-CMV) receiver in a
Direct Sequence Code Division Multiple Access (DS-CDMA) sys-
tem. The proposed approach can also be applied to multiple-antenna
and multi-carrier systems. The proposed scheme applies the matrix
power in the WL sense to approximate the noise subspace, which
fully exploits the advantages of non-circular signals. Instead of
using the SVD, two WL adaptive Recursive Least Squares (RLS)
algorithms are developed to obtain the channel estimate, namely
Augmented-RLS (A-RLS) and a more efficient one Structured-RLS
(S-RLS). We analyze the performance of the proposed algorithms
for the WL-CMV receiver and compare them to their linear counter-
parts.

Notation: The superscriptsT , H, and∗ represent transpose,
Hermitian transpose, and complex conjugation, respectively. We use
a tilde above a variable to denote the associated augmented quantity.
The trace of a matrix is denoted bytr {·} and the operationℜ{·} is
to take the real part of a variable.

2. SYSTEM MODEL

We consider the uplink of a DS-CDMA system withK asyn-
chronous users. In the complex baseband, the transmitted signal for
thek-th user is given by

s
(i)
k (t) = bk(i)

N−1
∑

n=0

√
Ekck(n)g(t− iTb − nTc), (1)

wherebk(i) ∈ {±1} is thei-th Binary Phase Shift Keying (BPSK)
symbol for the userk with unit variance,g(t) is baseband reference
pulse,Tb is the bit duration,Ek andck(n) ∈ {±1/

√
N} denote the
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corresponding energy per bit and the multiple access code with chip
intervalTc. The processing gainN is equal toTb/Tc.

The impulse response of the multipath channel can be described
by a tapped-delay line model and the channel vector can be written
ashk = [αk(0), . . . , αk(L− 1)]T ∈ C

L, whereαk(l) is the l-
th complex channel tap for thek-th user and

∑L−1
l=0 |αk(l)|2 = 1.

After a pulse matched filter with the impulse responseg(T − t), for
the i-th transmitted bit, the corresponding received vector of length
M = N + L− 1 can be written as

r(i) =
√
E1b1(i)C1h1 + v(i) + η(i) + n(i), (2)

including the signal from the desired user, the MUI partv(i), the ISI
η(i), and the zero-mean, complex Additive White Gaussian Noise
(AWGN) vectorn(i) with a power spectral densityN0. The code
matrix for thek-th userCk ∈ R

M×L is a Toeplitz matrix, which
can be expressed as

CT
k =











ck(0) · · · ck(N) 0 · · · · · · 0
0 ck(0) · · · ck(N) 0 · · · 0
...

...
...

...
...

...
...

0 · · · · · · 0 ck(0) · · · ck(N)











.

3. WIDELY LINEAR CHANNEL ESTIMATION

Figure 1 shows the block diagram of the WL receiver with blind
channel estimation.

Bijective
Transformation

Widely Linear Receiver

Widely Linear
Channel Estimation

WL Processing

T {·}

rr(t) r̃

w̃
ˆ̃
h

y
g(T − t)

t = Ts

Fig. 1. Block diagram of the WL receiver with channel estimation.

In order to exploit the information contained in both second-
order statistics, i.e.,R andŘ, the received signalr(i) and its com-
plex conjugater∗(i) arecombinedinto an augmented vector using
a bijective transformationT [21, 22]

r
T−→ r̃ : r̃ =

1√
2

[

rT , rH
]T ∈ C

2M×1, (3)

where1/
√
2 is a scalar to normalize the augmented vector. The blind

WL receiver can be obtained based on various criteria such as CMV,
Constrained Constant Modulus (CCM) [23], Minimum Output En-
ergy (MOE) [24] or other reduced-rank techniques [25, 26, 27].

3.1. WL-CMV Receiver

The output of a WL-CMV receiver is

y = w̃
H
r̃, (4)

where the complex weight vector̃w ∈ C
2M is calculated by solving

the following constrained optimization problem

minimizeE
{

|y|2
}

= w̃HR̃w̃

s. t.w̃HC̃1h̃1 = 1,
(5)

whereC̃1 =

[

C1 0

0 C1

]

/
√
2 is the augmented code matrix and

h̃1 is the augmented channel impulse response for the desired user.

The augmented covariance matrix̃R with a block structure is repre-
sented as

R̃ = E

{

r̃(i)r̃H(i)
}

=
1

2

[

R Ř

Ř∗ R∗

]

∈ C
2M×2M . (6)

For the non-circular data sources,Ř 6= 0, which means thatr is
second-order non-circular. The weight vector designed from (5)
minimizes the output power while preserving the response of the
desired user. The optimum solution isgiven by

w̃ =
R̃−1C̃1h̃1

h̃H
1 C̃H

1 R̃−1C̃1h̃1

. (7)

The corresponding maximum output Signal-to-Interference plus
Noise Ratio (SINR) of the WL-CMV filter can be calculatedas

SINRWL−CMV
max =

E1h̃
H
1 C̃H

1 R̃−1C̃1h̃1

1− E1h̃
H
1 C̃H

1 R̃−1C̃1h̃1

. (8)

It has beenshown in [21, 28] that when the data to be esti-
mated is real,w̃ follows the transformation defined in (3) such that
w̃ = [w̌T , w̌H ]T /

√
2, wherew̌ ∈ C

M×1. Therefore, a key property
of the WL filtering is the conjugate symmetry defined asw̃H r̃ =
r̃T w̃∗ = ℜ

{

w̌Hr
}

. Thus,w̃ minimizesE
{

|ℜ{y}|2
}

and equiva-
lently maximizes the output SINR:

SINRWL−CMV =
E

{

∣

∣ℜ
{

w̃H s̃
}
∣

∣

2
}

E

{

∣

∣

∣
ℜ
{

w̃H j̃
}
∣

∣

∣

2
} (9)

wheres̃ and j̃ represent the augmented desired signal and the in-
terference plus noise, respectively. We have shown in [26] that the
maximum output SINRs of the WL-CMV and the L-CMV satisfy
SINRWL−CMV

max ≥ 2 SINRL−CMV
max , i.e., the WL-CMV provides at

least 3 dB gain over the L-CMV.

3.2. Subspace-based Method

The WL-CMV solution in (7) requires the estimation of the channel
impulse response from the desired user. In the following we will
present the subspace-based method for the WL blind channel esti-
mation. The augmented covariance matrixR̃ can be decomposed by
using theSVD as

R̃ =
[

Ũs Ũn

]

[

Λ̃s + N0
2
IK 0

0
N0
2
I2M−K

]

[

Ũs Ũn

]H
,

(10)
whereΛ̃s = diag {λ1, · · · , λK} contains the singular values corre-
sponding to the signal subspace andŨs as well asŨn span the WL
augmented signal and noise subspaces, respectively. Due to the or-
thogonality of two subspaces, we can obtainŨnC̃1h̃1 = 0, which
leads to the following optimization problem

ˆ̃
h1 = argmin

h̃1

h̃
H
1 C̃

H
1 ŨnŨ

H
n C̃1h̃1, ‖h̃1‖ = 1. (11)

The estimated channelˆ̃h1 in the WL sense is the singular vector
corresponding to the smallest singular value of the matrixW =
C̃H

1 ŨnŨ
H
n C̃1. To solve the above problems, i.e., obtaining the

noise subspacẽUn by estimating the rank of the dominant subspace
and the recovery of the channel estimate, a computationallyexpen-
siveSVD is required [2]. It has also been shown in [8] that a slight
rank estimation error will result ina significant performance degra-
dation.
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Remark: Traditional linear subspace-based channel estimation
suffers from a phase ambiguity. For the WL case the phase ambi-
guity reduces to a sign ambiguity [17, 18]. Suchan ambiguity can
be resolved bydifferential encodingor the partial knowledge of the
channel coefficients, e.g., the first one or the one with the largest
magnitude.

3.2.1. The Power of the R Concept in the WL Case

The power of the R concept was introduced for the linear case in
[9]. For WL processing, to avoid estimating the noise subspaceŨn

directly, we introduce the following Lemma to approximateŨn by
the power of the matrix̃R.

Lemma:If the augmented covariance matrix̃R can be decom-
posed throughtheSVD as in (10), it holds that

lim
m→∞

(

N0

2

)m

R̃
−m = ŨnŨ

H
n , m = 1, 2, · · · . (12)

Proof: Applying (12) in (11) we can obtain

lim
m→∞

(

N0

2

)m

R̃−m

= lim
m→∞

Ũsdiag

{(

N0/2

λi +N0/2

)m}

i=1,··· ,K

ŨH
s + ŨnŨ

H
n

= ŨnŨ
H
n ,

where the last equality holds since the termN0/2
λi+N0/2

is less than
unity. Thus, the optimization problem in (11) can be simplified to

ˆ̃
h1 = argmin

h̃1

h̃
H
1 Wh̃1, ‖h̃1‖ = 1 (13)

with
W = C̃

H
1 R̃

−m
C̃1 ∈ C

L×L. (14)

3.2.2. The Iterative Power Method in the WL Case

In [10], the iterative power method is used to estimate the largest
singular value of a diagonalizable matrix. Following the idea in [11],
instead of usingtheSVD we can apply the modified power method
in the WL case to solve the optimization problem in (13) as follows:

h̃1(i) =
(I2L − βW ) h̃1(i− 1)

∥

∥

∥
(I2L − βW ) h̃1(i− 1)

∥

∥

∥

, (15)

whereβ = 1/tr{W } andh̃1(0) is orthogonal toh1. Similarly as
in [11], the recursioñh1(i) will converge to the augmented channel
impulse responsẽh1 with a sign ambiguity. It should be noted that
by using the iteration in (15), we avoid the computation of the SVD
to solve the problem of (13), which simplifies the implementation.

3.3. Adaptive WL Blind Channel Estimation Algorithms

Adaptive algorithms are of great interest due to their efficient imple-
mentation and good tracking performance in dynamic scenarios. In
the adaptive case, the iterative power method in (15) should also be
updated with

W (i) = C̃
H
1 R̃

−m(i)C̃1, m = 1, 2, 3, β(i) =
1

tr{W (i)} . (16)

It has been shown in [11] that for the linear case, it is sufficient to
use the power index up tom = 3. To estimateR̃−1(i), two adaptive
algorithms, namely A-RLS and S-RLS, are developed for the WL
blind channel estimation based on the power method.

3.3.1. Augmented RLS (A-RLS)

One straightforward way is to apply the RLS adaptation based on
the augmented received vectorr̃(i), i.e., the A-RLS algorithm. The
adaptations of both (15) and the WL-CMV solution (7) require es-
timating the inverse of a matrix. According to the matrix inversion
lemma, for example, we can updatẽR−1(i) as

R̃
−1(i) = λ−1

R̃
−1(i− 1)− λ−1

k(i)r̃H(i)R̃−1(i− 1), (17)

where the gain vector is

k(i) =
λ−1R̃−1(i− 1)r̃(i)

1 + λ−1r̃H(i)R̃−1(i− 1)r̃(i)
(18)

andλ is the forgetting factor which is a positive constant close to but
less than 1.

3.3.2. Structured RLS (S-RLS)

In A-RLS, the calculation ofR̃−1(i) requires the calculation of pa-
rameters with a dimension of2M , which is computationally inef-
ficient especially whenM is large. By exploiting the structured
property of the augmented covariance matrixR̃ as shown in (6), the
adaptive estimation algorithm can be implemented in a much more
efficient way [29]. Let us rewritẽR−1(i) as

R̃
−1(i) =

[

P (i) Q(i)
Q∗(i) P ∗(i)

]

, (19)

where it follows thatP = PH andQ = QT . Thereby, the estima-
tion of R̃−1(i) can be broken down into the calculation ofP (i) and
Q(i), respectively, so as to reduce the computational complexity. By
inserting (19) into (17), we can obtain

P (i) = λ−1
(

P (i− 1)− c−1(i)x(i)xH(i)
)

(20)

Q(i) = λ−1
(

Q(i− 1)− c−1(i)x(i)xT (i)
)

, (21)

where

x(i) = P (i− 1)r(i) +Q(i− 1)r∗(i) (22)

c(i) = λ+ 2 · ℜ
{

x
H(i)r(i)

}

. (23)

Moreover,inserting(19) into (16) as well as (15) and by using the
property of conjugate symmetry, we obtain

ȟ1(i) =
(IL−β̌(i)CH

1 P (i)C1)ȟ1(i−1)−β̌(i)CH
1 Q(i)C1ȟ

∗

1(i−1)

‖(IL−β̌(i)CH
1 P (i)C1)ȟ1(i−1)−β̌(i)CH

1 Q(i)C1ȟ
∗

1(i−1)‖ ,
(24)

whereβ̌(i) = 1/ℜ
{

tr
{

CH
1 P (i)C1

}}

. The expression fořh1(i)
breaks the calculation ofW (i) in (16) from2M down toM , which
reduces the computational complexity as compared to the A-RLS.
The augmented channel estimate followsh̃1(i) = T

{

ȟ1(i)
}

.
Remark 1:The initializations for the proposed algorithms are

chosen as̃R−1(0) = δaI2M ,P (0) = δpIM ,Q(0) = δqIM , where
δa, δp, δq are initialization scalars to ensure the numerical stability.
In order to keep the conjugate structure of WL processing, the chan-
nel estimate is initialized as̃h1(0) = T

{

ȟ1(0)
}

, where the first
coefficient ofȟ1(0) is set to 1 andtheothers to zero.

Remark 2: In the adaptive algorithms, the updates ofR̃−1(i)
andP (i),Q(i) will also be used in (7) for the A-RLS and S-RLS
versions of the receiver, respectively.
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4. COMPLEXITY ANALYSIS

The computational complexity of the proposed blind channel estima-
tion algorithms and their linear counterparts is estimated and com-
pared in Table 1. Fig. 2 illustrates the total number of complex
additions and multiplications per iteration per symbol as a function
of M , where the channel length is chosen asL = 3 and the ma-
trix powerm = 1, 2, 3. It can be observed that the complexity of
WL-A-RLS is higher than the L-RLS, since the most computational
complex part is the computation ofW (i). The WL-S-RLS has a
lower complexity than the WL-A-RLS, while withm = 1 it exhibits
a slightly lower complexity than the L-RLS withm = 3.
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Fig. 2. Computational complexity in terms of complex additions and
multiplications per iteration per symbol versusM .

Table 1. Computational Complexity Analysis
Algorithms Additions Multiplications

L-RLS (mL + 2)M2 + (L2 +

1)M + L2 + 3L+ 1

(mL + 3)M2 + (L2 +

2)M + 2L2 + 2L

WL-A-RLS 8(mL+1)M2+2(4L2+

1)M + 4L2 + 6L+ 1

4(2mL + 3)M2 +

4(4L2+1)M+8L2+4L

WL-S-RLS
(m = 1)

(2L + 4)M2 + 2(L2 +

1)M + L2 + 4L+ 1

(2L + 6)M2 + (2L2 +

3)M + 2L2 + L+ 1

WL-S-RLS
(m = 2, 3)

(8mL+4)M2+2(4L2+

1)M + 4L2 + 6L+ 1

(8mL+6)M2 +(8L2 +

3)M + 8L2 + 4L+ 1

5. SIMULATIONS

We consider a CDMA system withK = 12 users and only strictly
non-circular BPSK-modulated signals. Randomly generated se-
quences of lengthN = 32 are used as spreading codes. The
multipath channel is assumed time-invariant (block fading) with a
length ofL = 3 andapower delay profile of[0,−3,−6] dB. For the
adaptive algorithms wesetthe forgetting factorto λ = 0.998. Fig.
3 shows the Mean Square Error (MSE) performance of the channel
estimation for both the linear and WL schemes in a dynamic en-
vironment, where at bit 1000, 6 additional users enter the channel,
havingapower of 10 dB stronger. We can observe that the proposed
WL algorithms outperform their linear counterparts and are less
vulnerable to such dynamic situation. Increasing the power index
m provides a better estimation performance andm = 2 is sufficient
for the WL-A-RLS method, since almost no improvement can be
obtained withm = 3. The WL-S-RLS algorithm withm = 1 shows
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Fig. 3. The MSE performance for the proposed WL blind channel
estimation methods at SNR = 12 dB.

a slightly better performance than the corresponding WL-A-RLS but
has a much lower complexity.

The output SINR performance of the WL-CMV receiver using
the proposed blind channel estimation methods is shown in Fig. 4,
where no additional users enter the system. The maximum SINR
with perfect channel state information is denoted as a reference for
both linear and WL cases. We can see that the WL-CMV receiver
that usesA-RLS/S-RLS algorithms provides at leasta3 dB gain over
the L-CMV one.
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Fig. 4. The output SINR of the WL-CMV receiver using the pro-
posed WL blind channel estimation methods at SNR = 12 dB.

6. CONCLUSIONS

In this work, we propose a novel subspace-based WL blind channel
estimation scheme based on the iterative power technique for a WL-
CMV CDMA receiver. The proposed technique completely avoids
the computation of SVD in estimating the noise subspace as well
as in obtaining the channel estimate and takes full advantage of the
non-circular signals. The channel impulse response is adaptively up-
dated by two developed RLS algorithms based on the iterative power
method, namely A-RLS and S-RLS. Simulation results show that the
proposed WL schemes outperform their linear counterparts and the
S-RLS algorithmprovidesa good trade-off in terms of performance
and complexity.
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