SUBSPACE-BASED ADAPTIVE WIDELY LINEAR BLIND CHANNEL ESTIMATION FOR
CONSTRAINED MINIMUM VARIANCE CDMA RECEIVER

Nuan Song, Vimal Radhakrishnan Rodrigo C. de Lamare and Martin Haardt

o Shanghai Radio Equipment Research Institute, ShanghaiaCh
§ Communications Research Laboratory, lImenau Univerdifiechnology, limenau, Germany
x CETUC, PUC-RIo, Braziks Communications Research Group, Department of Electrpbiicsersity of York, UK

ABSTRACT To enhance the estimation performance, several measurements
) . ) of thereceivedsymbols are usually obtained at the receiver by means

We propose a subspace-based Widely Linear (WL) blind channgjf oversampling or several sensors [5]. On the contrary, “virtual”
estimation scheme based on the iterative power method for th@easurements can be constructed by WL processing, which saves
WL constrained minimum variance Code Division Multiple Accessthe hardware resources of the receiver front-end and more impor-
(CDMA,) receiver. The novel technique approximates the noise submntly leads to a significant performance gain for non-circular sig-
space by using a matrix power and the WL processing fully exploitsas. Thus, WL subspace-based blind channel estimation becomes
the second-order non-circularity of the signal. Two adaptive recuryyite promising. Another advantage is that in the WL case, the in-
sive least squares algorithms are developed using power iterationserent phase ambiguity that exists in conventional linear subspace
which completely avoid the computationally intensive singular valugmethods, reduces to a sign ambiguity [17, 18]. Existing WL blind
decomposition. Simulation results show an improved performancgnannel estimation schemes are basethersVD [19, 20, 17, 18].
of the proposed algorithms in terms of convergence and complexityhe complexity problem becomes more severe in the WL case, since
as compared to their linear counterparts. both the original received signaland its complex conjugate’ have

Index Terms— widely linear, non-circular, subspace, blind t0 be considered as measurements.

channel estimation, power method, constrained minimum variance  In this paper, we propose a new subspace-based WL blind chan-
nel estimation scheme based on the iterative power technique for

a WL Constrained Minimum Variance (WL-CMV) receiver in a
1. INTRODUCTION Direct Sequence Code Division Multiple Access (DS-CDMA) sys-
) ) ) ) tem. The proposed approach can also be applied to multiple-antenna
In dynamic environments which experience Intra-/Inter-Symbol In-ang multi-carrier systems. The proposed scheme applies the matrix
terference (ISI) and Multi-User Interference (MUI), blind channel power in the WL sense to approximate the noise subspace, which
estimation schemes are quite attractive, since no transmission ﬂj"y exploits the advantages of non-circular signals. Instead of
the training symbols is required. Conventional subspace-based a@singthe SVD, two WL adaptive Recursive Least Squares (RLS)
proaches to blind channel estimation mostly rely on the Singulaggorithms are developed to obtain the channel estimate, namely
Value Decomposition (SVD) to obtain the signal or noise subspac@gmented-RLS (A-RLS) and a more efficient one Structured-RLS
[1, 2, 3]. When a large processing gain of the system is applies_R|S). We analyze the performance of the proposed algorithms
SVD-based methods for a large matrix, by contrast, will exhibit afor the WL-CMV receiver and compare them to their linear counter-
very high computational complexity. Furthermore, these techniquegarts,
also require the estimate of the subspace rank, leygising infor- Notation: The superscriptd’, H, and * represent transpose,
mation theoretic criteria such as the Akaike Information Criterionyarmitian transpose, and complex conjugation, respectively. We use
(AIC) or Minimum Description Length (MDL) criterion [4]. Erro- 4 tjge above a variable to denote the associated augmented quantity.
neous rank estimates will also leadddrastic performance degra- The trace of a matrix is denoted by{-} and the operatiof {-} is
dation. Prior work in [5, 6, 7, 8, 9] proposed to approximate theyq iake the real part of a variable.

noise subspace by replacing the SVD with a matrix power, which

simplifies the optimization problem, but the channel estimate is still

obtained by computing the SVD. An iterative power technique [10] 2. SYSTEM MODEL

has been proposed in [11], which completely eliminates the SVD and

results in a substantial reduction of the computational complexity. We consider the uplink of a DS-CDMA system with® asyn-
Channel estimation techniques often require the second-ordehronous users. In the complex baseband, the transmitted signal for

statistics of the observation data vectgrwhich can be fully de- thek-th user is given by

scribed by its covariance matriR = E{rr'} and its pseudo-

covariance matrixR = E{rr”}. In the situations when is » N-1
second-order non-circufgri.e., R # 0, Widely Linear (WL) pro- sy (t) = be(i) > VExex(n)g(t —iTy — nT.), 1)
cessing can improve the performance as compared to the conven- n=0

tional linear approaches [12, 13, 14, 15, 16]. ) . ) . ) .
whereby (i) € {£1} is thei-th Binary Phase Shift Keying (BPSK)

INon-circularity mentioned in this paper is constraint toskeond-order ~ Symbol for the usek: with unit varianceg(#) is baseband reference
case. pulse, T is the bit durationEy andcx(n) € {+1/v N} denote the
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corresponding energy per bit and the multiple access code with chiphe augmented covariance matfwith a block structure is repre-
intervalT.. The processing gaily is equal tal; /7. sented as

The impulse response of the multipath channel can be described .
by a tapped-delay line model and the channel vector can be written R — g f(i)fH(i)} _1 { R; R* } € C2MX2M ()
ashy = [ax(0),...,ax(L —1)]" e CF, whereax(l) is thel- 2| R" R
th complex channel tap for theth user and>> =" ! o ()2 = 1. . . ) )
After a pulse matched filter with the impulsg:rlesop(‘ms(@)—' 1), for For the non-circular data sourceR, # 0, which means that is

the i-th transmitted bit, the corresponding received vector of lengtis€cond-order non-circular. The weight vector designed from (5)
M = N + L — 1 can be written as minimizes the output power while preserving the response of the

desired user. The optimum solutiongsen by

r(i) = VE1b1(§)Crhy + v(i) + n(i) + n(i), (2 Py
including the signal from the desired user, the MUI p&ii), the 1SI w = ﬁ o
n(z), and the zero-mean, complex Additive White Gaussian Noise 1 G R Cihy

(AWGN) vectorn() with a power spectral densityo. The code The corresponding maximum output Signal-to-Interference plus

matrix for thek-th userCy, € R**" is a Toeplitz matrix, which  Noise Ratio (SINR) of the WL-CMV filter can be calculatas!
can be expressed as

RECHR-1CH R
cx(0) cx(N) 0 0 SINRWL-CMV _ E1h1~C1~R _ C1~h1~ )
0 cp(0) - cp(N) 0 - 0 max 1— EhICPR-1C1hy

®)

cl =
§ : : : : : : : It has beershown in [21, 28] that when the data to be esti-
0 0 cg(0) - ep(NV) mated is realw follows the transformation defined in (3) such that
@ = [w?,wH )T //2, wherew € CM*!. Therefore, a key property
of the WL filtering is the conjugate symmetry defined@a8+ =
3. WIDELY LINEAR CHANNEL ESTIMATION 77" = R {w'r}. Thus,@ minimizesE {|R{y}|*} and equiva-

lently maximizes the output SINR:
Figure 1 shows the block diagram of the WL receiver with blind

. . S H <112
channel estimation. WL Processing SINRWL-CMY _ E {|§R{w 5} } ©
r(t) T [ Biject 7 — : y a2
_» Trangficrtrlr\::tion N Widely Llrlle;r Receiver | | E {‘éR {'w JH
t =T ’T{} B
h where s and 5 represent the augmented desired signal and the in-
terference plus noise, respectively. We have shown in [26] that the
EhannollEstimation maximum output SINRs of the WL-CMV and the L-CMV satisfy

SINRWL-CMV > 9 SINRL_CMV je., the WL-CMV provides at

max max

least 3 dB gain over the L-CMV.
3.2. Subspace-based Method

In order to exploit the information contained in both second-The WL-CMV solution in (7) requires the estimation of the channel
order statistics, i.e.R and R, the received signat(i) and its com-  impulse response from the desired user. In the following we will
plex conjugater* (i) arecombinedinto an augmented vector using present the subspace-based method for the WL blind channel esti-
a bijective transformatiofi” [21, 22] mation. The augmented covariance mafxcan be decomposed by

using theSVD as

Fig. 1. Block diagram of the WL receiver with channel estimation.

. . 1
r-Ls 7 r:T[TT, TH}TE(C2MX1, 3) ; o Ao+ Nog, 0 o
2 R= [ Us U, ] ? 02 NOI [ Us U, ] )
] ) . -5 l2M-K
wherel/+/2is a scalar to normalize the augmented vector. The blind (10)
WL receiver can be obtained based on various criteria such as CMWhereA , = diag {1, - - , Ak } contains the singular values corre-

Constrained Constant Modulus (CCM) [23], Minimum Output En- Sponding to the Signa| Subspace dﬁdas well ad}n span the WL
ergy (MOE) [24] or other reduced-rank techniques [25, 26, 27].  augmented signal and noise subspaces, respectively. Due to the or-
3.1. WL-CMV Receiver thogonality of two subspaces, we can obtainC1h; = 0, which
leads to the following optimization problem
The output of a WL-CMV receiver is

ot : T HAHyr y7HA~ 7
y= 'lI)H’IZ7 (4) hy; = argnilllln h; C; UnUn Clhl, ||h1H =1. (11)

where the complex weight vectar € C** is calculated by solving ) s ) )
the following constrained optimization problem The estimated channél; in the WL sense is the singular vector
corresponding to the smallest singular value of the maix =
minimize E {|y|*} = w" Rw 5) CYU, U C1. To solve the above problems, i.e., obtaining the
s.twCihy = 1, noise subspacd¥,, by estimating the rank of the dominant subspace
and the recovery of the channel estimate, a computatioeafien-
C: 0 sive SVD is required [2]. It has also been shown in [8] that a slight
~ 0o C rank estimation error will result ia significant performance degra-
h, is the augmented channel impulse response for the desired usdation.

whereC; = [ ) ] /+/2 is the augmented code matrix and
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Remark: Traditional linear subspace-based channel estimatior3.3.1. Augmented RLS (A-RLS)

suffers from a phase ambiguity. For the WL case the phase amb

guity reduces to a sign ambiguity [17, 18]. Suamambiguity can
be resolved bylifferential encodingr the partial knowledge of the

channel coefficients, e.g., the first one or the one with the large

magnitude.
3.2.1. The Power of the R Concept in the WL Case

The power of the R concept was introduced for the linear case
[9]. For WL processing, to avoid estimating the noise subsgigce
directly, we introduce the following Lemma to approximéfe by
the power of the matrixR. ~

Lemma:If the augmented covariance matdk can be decom-
posed througlthe SVD as in (10), it holds that

N
2
Proof: Applying (12) in (11) we can obtain
(NO ) m

2

lim Usdiag { (
m—» 00

=U.UZ,

lim
m— 00

12

lim R™™
m—r o0

No/2
i +N0/2

) } ol + 0,01
i=1,--- K

where the last equality holds since the teﬁn% is less than

unity. Thus, the optimization problem in (11) can be simplified to

> o

bne straightforward way is to apply the RLS adaptation based on
the augmented received vect(i), i.e., the A-RLS algorithm. The
5aldaptations of both (15) and the WL-CMV solution (7) require es-
timating the inverse of a matrix. According to the matrix inversion
lemma, for example, we can updd@ ! (i) as

o R\ =Xx'R(i—1) - 2"kG)FFGOR 6 —1), (17)
where the gain vector is
AR — 1D)7(d)

MO =13 ALFH (R (i — 1)7(i) "

and)\ is the forgetting factor which is a positive constant close to but
less than 1.

3.3.2. Structured RLS (S-RLS)

In A-RLS, the calculation o' () requires the calculation of pa-
rameters with a dimension @M, which is computationally inef-
ficient especially whenl/ is large. By exploiting the structured
property of the augmented covariance maffas shown in (6), the
adaptive estimation algorithm can be implemented in a much more
efficient way [29]. Let us rewritdR ' (i) as

{P(i) Q(7)
Q™)) P(9)

where it follows thatP = P* and@ = Q™. Thereby, the estima-

R'() =

(19)

_ - BHW Pl —
LT ars hi Wha, |l =1 (I3) " tion of B~(4) can be broken down into the calculation®f) and
Q(i), respectively, so as to reduce the computational complexity. By
with o ~ inserting (19) into (17), we can obtain
W =C{'R ™C, e C"*". (14)
Pl) = X\ <P(i 1) - c_l(i)w(i):cH(i)) (20)
3.2.2. The lterative Power Method in the WL Case Qi) = A <Q(i 1) - c*l(i)m(z‘)wT(i)> . @
In [10], the iterative power method is used to estimate the largest
singular value of a diagonalizable matrix. Following the idea in [11], Where
instead of usinghe SVD we can apply the modified power method . . . . ..
in the WL case to solve the optimization problem in (13) as follows: z(i) = P@E-Dr@)+Q3E—1)r (9 (22)
(Lo — AW) b (i — 1) i) = r+2-v{a"()r@)}. (23)

k(i) = (15)

H(IQL — BW) ha(i — 1)H’

wherep = 1/tr{W}~andl~z1(0) is orthogonal toh;. Similarly as
in [11], the recursiorh () will converge to the augmented channel
impulse responsh; with a sign ambiguity. It should be noted that

by using the iteration in (15), we avoid the computation of the SVD

to solve the problem of (13), which simplifies the implementation.
3.3. Adaptive WL Blind Channel Estimation Algorithms

Adaptive algorithms are of great interest due to their efficient imple/€duces the computational complexity as

mentation and good tracking performance in dynamic scenarios.
the adaptive case, the iterative power method in (15) should also
updated with

W) = CHR™(1)C1, m = 1,2,3, B(i) = m (16)

It has been shown in [11] that for the linear case, it is sufficient to

use the power index up t@ = 3. To estimateR (i), two adaptive

Moreover,inserting(19) into (16) as well as (15) and by using the
property of conjugate symmetry, we obtain

hi(i) =
(IL-BG)Cl P(i)C1)h1(i—1)-B()CI Q(i)C1 A} (i-1)
[[(IL =BG CH P(i)C1)h1 (i-1)-BG)CH Q(i)C1h; i—1) ||

(24)

where3(i) = 1/R {tr {C{'P(i)C1}}. The expression foh (4)
breaks the calculation d (¢) in (16) from2M/ down toM, which
compared to the A-RLS.
|fhe augmented channel estimate folldag(i) = T {h1(3)}.

be Remark 1:The initializations for the proposed algorithms are
chosen a®®™'(0) = d,I2ar, P(0) = 6, Iar, Q(0) = 641 nr, Where
da,0p, 04 are initialization scalars to ensure the numerical stability.
In order to keep the conjugate structure of WL processing, the chan-
nel estimate is initialized aB:(0) = T{hl(o)}, where the first
coefficient off; (0) is set to 1 andheothers to zero.

Remark 2:In the adaptive algorithms, the updates®f (i)

and P (i), Q(¢) will also be used in (7) for the A-RLS and S-RLS

algorithms, namely A-RLS and S-RLS, are developed for the WL 4 (gions of the receiver respectively.

blind channel estimation based on the power method.
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4. COMPLEXITY ANALYSIS

The computational complexity of the proposed blind channel estima-
tion algorithms and their linear counterparts is estimated and com-
pared in Table 1. Fig. 2 illustrates the total number of complex
additions and multiplications per iteration per symbol as a function
of M, where the channel length is chosenlas= 3 and the ma-

trix powerm = 1,2,3. It can be observed that the complexity of
WL-A-RLS is higher than the L-RLS, since the most computational
complex part is the computation 8 (). The WL-S-RLS has a

MSE of channel estimation

P R cant o

-©-L-RLS m=1
-<-L-RLS m=2
-&-L-RLS m=3
—6—WL-A-RLS m=1
—6—WL-A-RLS m=2||
—<— WL-A-RLS m=3
-+ WL-S-RLS m=1
-X-WL-S-RLS m=2
—+ WL-S-RLS m=3

lower complexity than the WL-A-RLS, while withh = 1 it exhibits
a slightly lower complexity than the L-RLS wittn = 3.

7

Channel length L =3

10 @

10°F

Number of complex operations

T

-©-L-RLS m=1
-<€-L-RLS m=2
-9-L-RLS m=3
—6—WL-A-RLS m=1
—<— WL-A-RLS m=2
—6— WL-A-RLS m=3|]
- WL-S-RLS m=1
-X- WL-S-RLS m=2
—+ WL-S-RLS m=3
. )

Fig. 2. Computational complexity in terms of complex additions and

I
50
M

70 90

multiplications per iteration per symbol versii. 151 1
Table 1. Computational Complexity Analysis 5 10
[ Algorithms | Additions | Multiplications | §
L-RLS (mL + 2)M? + (L + [ (mL + 3)M? + (L? + s =]
)M + L% +3L+1 2)M +2L% + 2L o -<-L-RLS m=2
WL-ARLS | 8(mLt)M212(dL%+ | 4@mL + 3)M? + g QRS
1)M +4L% + 6L + 1 4(AL2 +1)M +8L2 +4L g o4 iangg m=2
WL-S-RLS | (2L + 4)M? + 2(L? + | (2L + 6)M? + (2L? + g —&- WL-S-RLS m=1
(m=1) DM + L2 +4L +1 )M +2L2 + L+1 o I
WL-S-RLS | (8mL+4)M?+2(4L%+ | (8mL+6)M? + (8L + & - - - SINRECWY
(m=2,3) 1)M +4L% + 6L + 1 3)M +8L2 + 4L+ 1 —— SINRWLCMY
-0 160 260 360 460 560 660 760 860 960 1000

We consider a CDMA system withK® = 12 users and only strictly

5. SIMULATIONS

non-circular BPSK-modulated signals.

quences of lengthV = 32 are used as spreading codes.

;
1000
Number of Snapshots

1
0 500

Fig. 3. The MSE performance for the proposed WL blind channel
estimation methods at SNR = 12 dB.

a slightly better performance than the corresponding WL-A-RLS but
has a much lower complexity.

The output SINR performance of the WL-CMV receiver using
the proposed blind channel estimation methods is shown in Fig. 4,
where no additional users enter the system. The maximum SINR
with perfect channel state information is denoted as a reference for
both linear and WL cases. We can see that the WL-CMV receiver
that use#\-RLS/S-RLS algorithms provides at le@s? dB gain over
the L-CMV one.

Number of Snapshots

Fig. 4. The output SINR of the WL-CMV receiver using the pro-
posed WL blind channel estimation methods at SNR = 12 dB.

Randomly generated se-

The

6. CONCLUSIONS

multipath channel is assumed time-invariant (block fading) with a

length of L = 3 andapower delay profile of0, —3, —6] dB. For the

adaptive algorithms weetthe forgetting factoto A = 0.998. Fig.
3 shows the Mean Square Error (MSE) performance of the chann€MV CDMA receiver. The proposed technique completely avoids

In this work, we propose a novel subspace-based WL blind channel
estimation scheme based on the iterative power technique for a WL-

estimation for both the linear and WL schemes in a dynamic enthe computation of SVD in estimating the noise subspace as well
vironment, where at bit 1000, 6 additional users enter the channehs in obtaining the channel estimate and takes full advantage of the
havinga power of 10 dB stronger. \We can observe that the proposedon-circular signals. The channel impulse response is adaptively up-
WL algorithms outperform their linear counterparts and are lesslated by two developed RLS algorithms based on the iterative power
vulnerable to such dynamic situation. Increasing the power indexethod, namely A-RLS and S-RLS. Simulation results show that the
m provides a better estimation performance ane-= 2 is sufficient  proposed WL schemes outperform their linear counterparts and the
for the WL-A-RLS method, since almost no improvement can beS-RLS algorithnprovidesa good trade-off in terms of performance
obtained withm = 3. The WL-S-RLS algorithm withn = 1 shows  and complexity.
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