
ON PILOT-SYMBOL AIDED CHANNEL ESTIMATION IN FBMC-OQAM

Ronald Nissel Markus Rupp

Technische Universität Wien, Institute of Telecommunications
Gusshausstraße 25, 1040 Vienna, Austria

ABSTRACT
Filter bank multicarrier modulation is considered as a possible can-
didate for 5G. In this paper, we consider pilot-symbol aided channel
estimation and address the problem of canceling the imaginary in-
terference at the pilot positions. We develop a matrix formulation
for the transmission system which allows us to formulate general
conditions on the auxiliary pilot symbols, capturing also the interde-
pendency of closely spaced pilots and an arbitrary number of auxil-
iary pilot symbols. By using two auxiliary symbols per pilot instead
of one, we are able to improve the peak-to-average power ratio as
well as the achievable capacity for small to medium signal-to-noise
ratios. The achievable capacity can further be increased by interfer-
ence cancellation based on linear precoding for which we propose
an algorithm to find the coding matrix required. Finally, we compare
auxiliary pilot symbols and linear precoding in terms of complexity
and performance.

Index Terms— FBMC-OQAM, Channel estimation, Interfer-
ence cancellation, Auxiliary pilot, Coding

1. INTRODUCTION

Multicarrier modulation [1] offers many advantages such as sim-
ple equalization and adaptive modulation and coding techniques,
with Orthogonal Frequency Division Multiplexing (OFDM) being
the most prominent scheme, currently employed in many wireless
communication standards such as LTE and IEEE 802.11. However,
OFDM is based on rectangular pulses which perform poorly in the
frequency domain, causing some disadvantages [2]. Recently, Fil-
ter Bank MultiCarrier (FBMC) has been identified by many authors
[3, 4, 5, 6] as a possible candidate to replace OFDM in the next gen-
eration of wireless communications systems (5G). The basic idea
of FBMC dates back to the 1960s [7, 8] and was reformulated, for
example, in [9, 10, 11]. Note that throughout literature, different
names, such as cosine-modulated multitone, staggered multitone,
discrete wavelet multitone and OFDM/Offset Quadrature Amplitude
Modulation (OQAM), have been used to describe, essentially, the
same concept that we will refer to here as FBMC.

Compared to OFDM, channel estimation becomes more chal-
lenging in FBMC due to the imaginary interference. Preamble based
channel estimation, as for example used in IEEE 802.11, is investi-
gated in [12, 13, 14, 15] for FBMC. However, if the channel varies in
time, pilot-symbol aided channel estimation becomes a better choice
because it allows to track the channel, which also explains its em-
ployment in LTE. To deal with the imaginary interference in pilot-
symbol aided channel estimation, [16] uses one symbol per pilot, the
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so called auxiliary pilot symbol [17], to cancel the imaginary inter-
ference. The main drawback of this method is a power offset. To deal
with this problem, [18] uses non-linear techniques on a discrete set
of possible interference terms, while authors in [19] propose a more
elegant method based on linear precoding, in the following simply
coding, which completely eliminates the power offset at the expense
of increased complexity. Authors in [20] combine the methods of
[16] and [19], resulting in intermediate complexity and a (small)
power offset.
Novel contribution:

Firstly, the method in [16] does not allow closely spaced pilots
or more than one auxiliary symbol per pilot. We therefore propose a
more general method to choose the auxiliary pilot symbols, avoiding
these drawbacks. By, for example, using two auxiliary symbols per
pilot, we are already able to reduce the power offset from 4.3 to
0.8 and to increase the achievable capacity for low Signal-to-Noise
Ratio (SNR) values by approximately 5%.

Secondly, authors in [19, 20] consider only coding of up to
N = 8 symbols. We propose an algorithm to design the coding
matrix required for an arbitrary number of coded symbols.

Thirdly, we quantify the complexity difference between auxil-
iary pilot symbols and coding.

2. SYSTEM MODEL

In FBMC transmissions, the data symbols xl,k at frequency position
l and time position k are modulated by the basis pulses gl,k(t), so
that the transmit signal s(t) of our system can be written as:

s(t) =

K−1∑
k=0

L−1∑
l=0

gl,k(t)xl,k, (1)

with
gl,k(t) = p(t− kT ) ej2π lF (t−kT ) e jπ

2
(l+k). (2)

The basis pulse gl,k(t) is essentially a time and frequency shifted
version of the prototype filter p(t) whereas the time spacing T to-
gether with the frequency spacing F determine the spectral effi-
ciency. Our prototype filter p(t) is based on Hermite polynomials
Hn(·), as suggested in [21]:

p(t) =
1√
T0

e
−2π

(
t
T0

)2 ∑
i={0,4,8,
12,16,20}

aiHi

(
2
√
π
t

T0

)
, (3)

for which we found the coefficients ai numerically:
a0 = 1.412692577

a4 = −3.0145 · 10−3

a8 = −8.8041 · 10−6

a12 = −2.2611 · 10−9

a16 = −4.4570 · 10−15

a20 = 1.8633 · 10−16

. (4)

The prototype filter in (3) guarantees orthogonality of the basis
pulses for a time spacing of T = T0 and a frequency spacing of
F = 2

T0
. However, maximal spectral efficiency requires TF = 1
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Fig. 1. Imaginary interference weights in FBMC (certain elements
of D). At pilot positions, we have to mitigate this interference by
using auxiliary pilot symbols or by coding N surrounding symbols.

which is not possible for pulses that are localized in both, time and
frequency, according to the Balian-Low theorem [22]. In FBMC,
only real valued symbols are transmitted and the orthogonality con-
dition is replaced with the real orthogonality condition. The time
spacing as well as the frequency spacing can then be reduced by a
factor of two, so that TF = 1

2
T0

1
2

2
T0

= 1
2

(real symbols). This
results in the same spectral efficiency as OFDM without CP (and
ignoring guard bands), that is, TF = 1 (complex symbols), but has
the additional advantage that the basis pulses are localized both in
time and frequency.

In order to keep the analytical investigation simple, we formulate
our transmission system in the discrete time domain and employ a
matrix description. The basis pulses in (2) are sampled at ∆t and

placed in a matrix G ∈ C
(

(K−1)T+6T0
∆t

+1
)
×LK , so that the i-th row

and the l + kL-th column of G is given by:

[G]i,l+kL =
√

∆t gl,k(t)
∣∣∣
t=∆t i−3T0

. (5)

The sampled transmit signal in (1) can then be rewritten by:
s = Gx, (6)

whereas all data symbols xl,k are stacked in the vector x ∈ RLK×1.
For a fair comparison of different transmission techniques we always
consider the same average transmit power PS, defined as:

PS =
1

K T
tr
(
E
{
ssH

})
∆t . (7)

We also assume a low delay spread and a low Doppler spread [23],
so that no relevant inter-symbol and inter-carrier interference occurs.
Multiplying the received signal with GH (matched filter), provides
the received data symbol vector y ∈ RLK×1 as:

y = diag{h}Dx + n, (8)
with

D = GHG. (9)
The vector h ∈ CLK×1 represents the channel and n the complex
Gaussian noise vector, n ∼ CN (0, Pn D). Note that in OFDM, D
becomes an identity matrix, D = ILK , whereas in FBMC this ma-
trix has non-diagonal imaginary elements and only <{D} = ILK .

3. PILOT-SYMBOL AIDED CHANNEL ESTIMATION

In pilot-symbol aided channel estimation, special “data” symbols,
the so called pilot symbols, are known a priori at the receiver. In
OFDM, the channel estimation then becomes a trivial task [24, 25,
26]: the received symbols at the pilot positions are divided by the
corresponding data symbols which delivers immediately an estimate

of the channel coefficients at the pilot positions, see (8) and the fact
that D is an identity matrix. The channel values at the data positions
are then obtained through interpolation or extrapolation. Unfortu-
nately, in FBMC such simple approach does not work due to imag-
inary interference, that is, the matrix D consists of non-diagonal
imaginary elements. FBMC is based on the idea of taking the real
part in order to eliminate the imaginary interference. However, this
only works after equalization of the phase shift caused by the chan-
nel. Because we do not know this phase shift prior to channel estima-
tion, we have to use the complex domain instead of the real domain.
Figure 1 shows the imaginary interference weights surrounding one
pilot (data) symbol. Since the interference is purely imaginary val-
ued, taking the real part would completely cancel the interference.
However, in the complex domain we obtain a Signal-to-Interference
Ratio (SIR) of 0 dB which is clearly too low for an accurate channel
estimation. In order to employ pilot-symbol aided channel estima-
tion in FBMC, we thus have to mitigate the imaginary interference.

3.1. Auxiliary Pilot Symbols

Sacrificing one additional data symbol, the so called auxiliary pi-
lot symbol, allows to cancel the imaginary interference at one pilot
position. In this paper, we use the matrix representation developed
in Section 2 in order to express this cancellation condition in a more
general way that captures also the interdependency of closely spaced
pilot symbols and an arbitrary number of auxiliary pilot symbols.
The imaginary interference at the pilot positions can be completely
eliminated if the auxiliary pilot symbols are chosen so that:

xP =
[
DP,P DP,D DP,A

] xPxD
xA

 , (10)

which follows from our transmission system model in (8). The vec-
tor xP ∈ R|P|×1 denotes all those elements of x at the pilot posi-
tions. The same applies to xD ∈ R|D|×1 at the data positions and
xA ∈ R|A|×1 at the auxiliary pilot positions. Similar, the matrix
DP,D ∈ C|P|×|D| consists of the row elements and the column ele-
ments of D at the pilot positions respectively data positions. Again,
the same is true for DP,P and DP,A. If the number of auxiliary pi-
lot symbols |A| is larger than the number of pilot symbols |P|, (10)
has infinitely many solutions. Because we want to spend as little en-
ergy as possible on auxiliary pilot symbols, we can solve (10) using
the Moore-Penrose pseudoinverse [27], leading to:

xA = D#
P,A (IP −DP,P)xP −D#

P,ADP,DxD, (11)
with

D#
P,A = DH

P,A

(
DP,AD

H
P,A

)−1

. (12)

If the pilot symbols are spaced sufficiently far away from each other,
DP,P becomes an identity matrix, simplifying (11). Let us further
consider the case of one auxiliary symbol per pilot symbol so that
DP,A becomes a diagonal matrix whose elements are given by the
interference weight at auxiliary pilot position, that is, 0.4357, see
Figure 1. Let us also define the auxiliary pilot power offset κA as
follows:

κA =
PA
PD

, (13)

with PD being the power of the data symbols and PA the power of
the auxiliary pilot symbols which is determined by (11). Suppose we
want to cancel N = 8 closest interferers, see Figure 1. The power
offset then becomes: (3 · 0.43572 + 4 · 0.23932)/0.43572 = 4.21.
Thus, the auxiliary pilot power is 4.21 times larger than the data
power! Let us now consider the case of two auxiliary pilot symbols
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N=4⇒ SIR=9 dB† N=8⇒ SIR=22 dB†
Cod. 1Aux. 2Aux. Cod. 1Aux. 2Aux.

Aux. power offset - 3 0.5 - 4.21 0.8
TX multiplications∗ 0 0 0 2 4 4
TX summations 8 2 1 24 6 5
RX multiplications∗ 0 none none 8 none none
RX summations 9 none none 25 none none
∗multiplications by -1 and 1/2 are considered as no complexity! †at the pilot positions, for κP = 2

N=16⇒ SIR=35 dB† N=28⇒ SIR=61 dB†
Cod. 1Aux. 2Aux. Cod. 1Aux. 2Aux.

Aux. power offset - 4.26 0.82 - 4.27 0.82
TX multiplications∗ 12 12 12 26 24 24
TX summations 88 14 13 184 26 25
RX multiplications∗ 32 none none 80 none none
RX summations 89 none none 185 none none
∗multiplications by -1 and 1/2 are considered as no complexity! †at the pilot positions, for κP = 2

Table 1. Additional complexity per pilot symbol for canceling N
closest interferers: Coding is more complex than using auxiliary pi-
lot symbols. In particular, auxiliary pilot symbols do not require any
additional calculations at the RX. Two auxiliary pilot symbols have
approximately the same complexity as one auxiliary pilot symbol.

which split the cancellation job equally between themselves, leading
to a power offset of (2 · 0.43572 + 4 · 0.23932)/(2 · 0.4357)2 =
0.8, so that the auxiliary pilot power is actually lower than the data
symbol power. The drawback then is a reduction of the number of
data symbols. However, as we will show in Section 4, the overall
capacity increases for low to medium SNR values because the saved
power offsets the loss of data symbols. The transmitted signal in (6)
can be rewritten for the case of auxiliary pilot symbols by:

sA = GA

[
xP
xD

]
, (14)

whereas A ∈ RLK×(LK−|A|) represents the auxiliary cancellation
conditions in (11). Expressing (7) in terms of the data symbol power
PD for a given average transmit power PS leads to:

PD =
T

∆t

K

|A|κ̄A + |P|κP + |D|PS, (15)

with κP denoting the pilot power offset and κ̄A the average auxiliary
pilot power offset. Equation (15) will become relevant in Section 4
for performance comparison. Table 1 compares the additional com-
plexity per pilot symbol for different imaginary interference mitiga-
tion techniques.

3.2. Coding

Instead of using dedicated auxiliary symbols, we code the data in
such a way that the imaginary interference is canceled at the pilot
positions. Therefore, we rewrite the transmitted signal as:

sC = GC

[
xP
xD

]
, (16)

with C ∈ RLK×(LK−|P|) being the coding matrix. After chan-
nel estimation, we then decode the equalized received signal by CT

whereas the condition CTC = I(LK−|P|)×(LK−|P|) has to hold,
that is, the coding vectors ci are orthonormal, so that the transmis-
sion system becomes similar to the case without coding. In particu-
lar, the noise statistics are the same as for the case without coding.
We assume that the pilot symbols are spaced sufficiently far away
from each other, allowing us to design the coding independently for
different pilot symbols. Thus, the problem of finding C can be sim-
plified into finding a much smaller coding matrix C̃ ∈ RN×(N−1)

which codes N interfering symbols closest to the pilot, see Figure 1.
We follow the approach suggested in [19]: all interference weights
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Fig. 2. Illustration of the proposed algorithm for N = 16 and M =
3 clusters. The key extension to [19, 20] are the vectors v14 and v15

which, in combination with Gram-Schmidt orthogonalization, allow
to straightforwardly find the coding matrix C.

with the same magnitude are clustered together and stacked in a vec-
tor d̃I ∈ RN×1, as shown in Figure 2. We assume there exists M
such clusters, each having either 2, 4 or 8 elements. By generating
Hadamard matrices, dividing each row by the corresponding inter-
ference weight and canceling the column that is not orthogonal to
the interference weights, we can find i = 1 . . . N −M linearly in-
dependent coding vectors c̃i ∈ RN×1 which are orthogonal to each
other and to d̃I, see Figure 2. Although the authors in [19] provide
general conditions for the remainingM−1 coding vectors, they give
no detailed instructions on how to construct them. We thus propose
the following algorithm:

1. Generate j = N −M + 1 . . . N − 1 vectors vj ∈ RN×1

which consist of only two nonzero elements, located at the
transition between two clusters, and chosen so that d̃TI vj =
0, see Figure 2.

2. Use Gram-Schmidt [27] orthogonalization to find the remain-
ing M − 1 coding vectors for j = N −M + 1 . . . N − 1:

c̃j = vj −
j−1∑
i=1

vTj c̃i

c̃Ti c̃i
c̃i. (17)

Note that (17) preserves the orthogonality to the interference vector
d̃I, making such approach feasible. In order to keep the compu-
tational complexity low, the vectors vj should combine always the
clusters with the smallest number of elements for an increasing j.
Once two clusters have been combined by the vector vj , they form a
new cluster. Our proposed algorithm describes a general way of find-
ing the coding matrix C̃ and does not necessarily require orthogonal
shortened “Hadamard” matrices, but using them reduces the overall
computational complexity. Expressing the data symbol power PD in
terms of the average transmit power PS gives:

PD =
T

∆t

K

|P|κP + |D| − |P|PS. (18)

In particular, a pilot power offset of κP = 2 results in the same data
symbol power PD as an FBMC system without channel estimation.
Additionally, choosing κP = 2 guarantees the same SNR for chan-
nel estimation (complex domain) and for data transmission (taking
the real part reduces the noise power by a factor of two).
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Fig. 3. The large power offset of one auxiliary symbol per pilot re-
sults in a high PAPR and generates a high peak in the transmit power.
By employing two auxiliary symbols we can mitigate these harmful
effects at approximately the same computational complexity.

4. NUMERICAL RESULTS

FBMC has a higher spectral efficiency than OFDM because it does
not employ a Cyclic Prefix (CP) and uses the available bandwidth
more efficiently. We will quantify this improvement by comparing
FBMC to a 1.4 MHz LTE resembling OFDM signal which uses
a subcarrier spacing of F = 15 kHz. For this OFDM signal we
assume a cycling prefix length of 4.75 µs and KOFDM = 14 OFDM
symbols, resulting in a time duration of 1 ms. FBMC on the other
hand allows to transmit KFBMC = 30 FBMC symbols within the
same 1 ms time interval. However, this symbols are real valued
(equivalent to 15 complex symbols). As a reference (dashed line
in Figure 4) we also consider an OFDM signal without CP that
uses KOFDM,noCP = 15 OFDM symbols. Although LTE occupies
1.4 MHz, it only uses LOFDM = 72 subcarriers (1.08 MHz). For
FBMC we assume LFBMC = 87 subcarriers so that the power spec-
tral density is below 84 dB of its maximum value for frequencies
outside the 1.4 MHz bandwidth. Furthermore, we assume a dia-
mond shaped LTE pilot pattern. OFDM has a data symbol density
(|D|/LK) of 0.9524 while OFDM without CP has a density of
0.9556 (they have the same number of pilot symbols). FBMC that
uses channel estimation based on coding or one auxiliary pilot sym-
bol has the same density as OFDM without CP, that is, 0.9556,
whereas by using two auxiliary symbols the density decreases to
0.9333 because of the decreased number of data symbols.

Figure 3 shows the Peak-to-Average Power Ratio (PAPR),
maxi |[s]i|2/PS, and the transmit power, diag

(
E
{
ssH

})
, for 12

subcarriers, 0.2 ms, and an average signal power of PS = 1. As
expected, one auxiliary pilot symbol performs poor due to the power
offset. By flipping pilot and auxiliary position at every second pi-
lot subcarrier, we can improve the performance. The performance
can further be increased by changing the pilot pattern so that the
pilots are evenly distributed in time. However, this requires many
subcarriers while two auxiliary symbols and coding still perform
better.

Although we could include channel estimation in our capacity
considerations [28], we keep the model simple by assuming that only
the phase has to be estimated and our channel estimation performs
arbitrary close to perfect channel knowledge, delivering a theoretical
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Fig. 4. Capacity improvement of FBMC compared to 1.4 MHz LTE.
The maximum improvement of 15

14
(cyclic prefix)× 87

72
(bandwidth)×

0.9556
0.9524

(pilot density) ≈ 30% can only be achieved in the limit case
of SNR → ∞. For SNROFDM

D values smaller than 14 dB, two
auxiliary symbols per pilot outperform one auxiliary symbol.

performance bound of our transmission system. By interpreting each
data position as a discrete-time Gaussian channel [29], we find the
achievable capacities (which also takes the system overhead such as
pilot symbols into account) by:

COFDM =
|D| log2

(
1 + PD

Pn

)
KT

(19)

CFBMC =
|D| 1

2
log2

(
1 + PD

Pn/2

)
KT

(20)

Because FBMC operates in the real domain, we have to include a
factor of 1/2 in the capacity equation while at the same time the
(complex) noise power is reduced by a factor of two, as shown in
(20). Note that for the same number of subcarriers L and the same
transmit power PS, we have POFDM

D = POFDM,noCP
D = 2P FBMC,Cod.

D ,
so that COFDM,noCP = CFBMC,Cod. while COFDM,noCP > CFBMC,Aux.

because auxiliary pilot symbols are “wasted” energy. Figure 4
shows the improvement in achievable capacity for FBMC relative to
1.4 MHz LTE. For a fair comparison, we keep the average transmit
power PS constant.

5. CONCLUSION

If complexity does not constitute an issue, we suggest to use cod-
ing for pilot symbol aided channel estimation. Coding mitigates the
imaginary interference at pilot positions, offers a low PAPR, no en-
ergy is wasted, and well-known channel estimation techniques from
OFDM can directly be applied. To reduce the complexity of coding,
we suggest to use the algorithm described in Section 3.2. However,
if computational complexity becomes relevant, auxiliary pilot sym-
bols might be a better choice. One auxiliary symbol per pilot, as
suggested in literature, leads to a severe power offset, increasing the
PAPR and wasting too much energy. We thus suggest to use two aux-
iliary symbols which strongly decreases the PAPR and, in addition,
offers a higher capacity for small to medium SNR values because the
power that is saved offsets the loss of data symbols.
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