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ABSTRACT
This paper addresses the BEM (Basis Expansion Model)
channel estimation in receivers of multicarrier communica-
tion signals. The estimation performance can be improved
by choosing optimal basis functions or an optimal number of
predefined basis functions; these approaches require knowl-
edge of channel statistics. Another approach to improve the
performance is to set the number of basis functions large
enough to guarantee a negligible modeling error and optimize
the regularization. In this paper, we adopt the latter approach
and propose an adaptive regularization scheme based on the
generalized cross-validation; the scheme does not require the
knowledge of channel statistics. We demonstrate by sim-
ulation for LTE uplink scenarios that the proposed scheme
allows a high estimation performance in a range of channels
and noise levels.

Index Terms— BEM, channel estimation, cross-validation,
DPSS, LTE, OFDM

1. INTRODUCTION

The detection performance of receivers in multicarrier com-
munication systems, such as the LTE system [1–5], depends
on the accuracy of channel estimation. In this work, we con-
sider the pilot-based channel estimation in multicarrier sys-
tems. In the channel estimation, the BEM (Basis Expan-
sion Model) is often used [6–17]. BEMs considered in the
literature include the Karhunen-Loeve functions [6, 7], dis-
crete prolate spheroidal sequences (DPSS) [9, 15–17], com-
plex exponentials [8–10], algebraic polynomials [18] and B-
splines [11–14]. Largely popular are DPSS; if applied to
the channel frequency response estimation, DPSS are opti-
mal (Karhunen-Loeve functions) in multipath channels with
a uniform power delay profile (PDP) within the channel delay
spread.

The performance of BEM channel estimation can be im-
proved by choosing optimal basis functions or an optimal
number of predefined basis functions, which depends on
smoothness of the channel response and the level of noise;
in the latter case, the approximation (modeling) error and the
statistical error are optimally balanced in the total estimation

error. These two approaches require knowledge of channel
statistics. Another approach to improve the estimator perfor-
mance is to set the number of basis functions large enough
to guarantee a negligible modeling error and optimize the
regularization. In this paper, we adopt the latter approach and
propose an adaptive regularization scheme. We demonstrate
by simulation, for the LTE uplink scenarios with a BEM
channel estimator exploiting DPSS, that the proposed scheme
allows a high estimation performance for a range of channels
and noise levels.

2. SIGNAL MODEL AND BEM CHANNEL
ESTIMATION

The receivedN × 1 signal vector is given by

z = Sh+ n, (1)

where h is an N × 1 vector describing the channel frequency
response, S is an N ×N diagonal matrix of transmitted pilot
symbols, n is an N × 1 noise vector, and N is the number of
subcarriers. The noise is assumed Gaussian with independent
zero mean elements of variance σ2. The vector h is repre-
sented by an M × 1 vector of BEM expansion coefficients
a and the channel estimation is transformed into estimation
of the vector a (of a reduced size compared to the vector h).
The estimate of h is given by ĥ = Bâ, where B represents
the basis functions; more specifically,B is anN ×M matrix,
whose M columns are the basis functions. The expansion
coefficients a are estimated as â = Az, where

A =
(

B
H
RsB+Rr

)

−1
B

H
S
H , (2)

Rs = SHS, andRr is a regularization matrix; e.g., if Rr =
σ2R−1

a , where Ra = E{aaH} is the covariance of the ex-
pansion coefficients and E{·} denotes expectation, we arrive
at the LMMSE (linear minimumMSE) solution. Such a basic
channel estimator is described as shown in Table 1.

The MSE of the channel estimates is defined as

ϵ =
tr{E[(h− ĥ)(h− ĥ)H ]}

tr{E[hhH ]}
, (3)
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Table 1. Basic BEM channel estimator
Input: z, B, S,Rr

1 R = B
H
S
H
SB+Rr

2 ξ = B
H
S
H
z

3 Solve: Râ = ξ

4 Channel estimate: ĥ = Bâ

Output: ĥ, â

where tr{·} is the trace operator. Let Υ = E[hhH ] be the
channel covariance, then tr{E[hhH ]} = tr{Υ} = Nσ2

h,
where σ2

h is the channel variance. Denoting P = BAS, we
arrive at

ϵ =
tr{(IN −P)Υ(IN −P)H + σ2

nPR−1
s PH}

Nσ2
h

, (4)

where IN is an N × N identity matrix. For a given covari-
ance matrixΥ and pilot symbolsS, the MSE is defined by the
matrix P = (U−1 + IN )−1 with U = BR−1

r BHRs. This
implies that the sameMSE will be achieved by two sets of ba-
sis functions,B1 and B2, if the corresponding regularization
matrices Rr,1 and Rr,2 are chosen to satisfy B1R

−1

r,1B
H
1 =

B2R
−1

r,2B
H
2 . This also implies that the same MSE can be ob-

tained either by using a specific basis or by using a specific
regularization.

The choice of the regularization matrix Rr significantly
affects the estimator performance. There are different ap-
proaches for this choice. We will consider the following reg-
ularization schemes:
• LMMSE regularization (Rr = σ2R−1

a ), whereRa is the
covariance matrix of expansion coefficients for the true
channel PDP.

• Model-based regularization (Rr = σ2R
−1

a,0), whereRa,0

is a covariance matrix of expansion coefficients for a
model channel PDP; the model PDP can be different from
the real one.

• Diagonal loading (Rr = σ2IM ).
The optimal performance is achieved using the LMMSE

regularization. This however requires the knowledge of the
channel PDP; in particular, it requires the perfect knowledge
of the number of multipath components, their delays and vari-
ances, which is difficult to accurately estimate in practice.

More practical approach is a model-based regularization.
LetM be a model channel covariance (in general, not neces-
sarily equal to Υ) that characterizes a priori information on
the channel. Such a priori information can be that the chan-
nel delays are limited to some value τmax and within this limit
the PDP is uniform. This information can be exploited to de-
velop specific basis functions; e.g., for the limited delays, the
optimal basis functions (providing the smallest approxima-
tion error for a fixed M ) across subcarriers are DPSS. Then
M is the covariance matrix with elements in (8). If the real
channel covariance is M, i.e. Υ = M, DPSS provide the

(optimal) Karhunen-Loeve decomposition. This however still
requires the knowledge of the delay spread, which is difficult
to acquire.

In practice, the diagonal loading is often used; it only re-
quires the knowledge of the noise variance that can be avail-
able in many scenarios. This regularization, however, results
in significant drop in the estimation performance (e.g., see
simulation results below).

Here, we propose an algorithm for adaptive regularization
that does not require the knowledge of the channel statistics.

3. ADAPTIVE REGULARIZATION OF THE
CHANNEL ESTIMATOR

The model-based uniform regularization allows achieving a
high estimation performance if the (true) channel delay spread
is known and matches to the uniform-model delay spread.
However, in practice, it is unavailable and needs to be esti-
mated. Such estimation is a complicated problem due to the
small amount of observed data.

Note that two components contribute to the estimation
error: approximation (modeling) and statistical errors. The
modeling error can typically be reduced by increasing the
number of basis functions M . This, however, increases the
statistical error. The regularization should guarantee a bal-
ance between these two components. To balance them, the
generalized cross-validation (GCV) method can be used [19].
In application to the channel estimation, the GCVmethod can
be based on minimizing the quantity

V =
||z−Gz||2

(N − tr{G})2
, (5)

whereG = SB(BHSHSB+Rr)−1BHSH .
The idea of adaptive regularization is to use a predefined

set of matricesRr and find within this set a matrix that mini-
mizes V . Note that the numerator in (5) represents the energy
of the residual signal and it can be easily evaluated. If the ba-
sis B and pilot S are known a priori, the denominator in (5)
can be precomputed and stored for a set of matricesG.

In [20], a modification to the criterion (5) was proposed
to improve the estimation accuracy:

V =
||z−Gz||2

(N − α · tr{G})2
, (6)

where the parameter α is adjusted, and typically is in the
range [1, 2]. In our simulation, we will be using the criterion
in (6). The adaptive regularization algorithm is presented in
Table 2. In this algorithm, a set of Qiter regularization matri-
ces Rq, q = 1, . . . , Qiter, is precomputed. In our examples
below, these matrices will be inverse ofQiter = 10 covariance
matrices for the uniform PDP with delay spreads

τmax

τCP
∈ {180, 156, 144, 108, 72, 36, 18, 9, 6, 3}/144, (7)
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Table 2. Adaptive regularization algorithm
Input: z, S,B, Qiter, {Rq}

Qiter
q=1, σ

2

1 ξ = B
H
S
H
z

2 for q = 1 : Qiter
3 Rr = σ2

Rq

4 F = (BH
S
H
SB+Rr)−1

5 G = SBFB
H
S
H

6 V = ||z−Gz||2

(N−α·tr{G})2

7 if q = 1
8 Vmin = V , â = Fξ

9 elseif V < Vmin
10 Vmin = V , â = Fξ

11 endif
12 end for

where τCP is the length of the cyclic prefix. Thus, the ratio
τmax/τCP is in the interval [0.0208, 1.25].

4. NUMERICAL RESULTS

For simulation, we consider LTE uplink scenarios [1] with
two receive antennas at the base station. In the LTE uplink,
the data are transmitted by subframes of 14 multicarrier sym-
bols divided into two time slots, 7 symbols each. In the fourth
symbol of each slot, a pilot Zadoff-Chu sequence [1] is trans-
mitted at N subcarriers. In the other multicarrier symbols,
(turbo encoded) data are transmitted on theN subcarriers us-
ing the single-carrier frequency division multiple access (SC-
FDMA) with QAM symbols; e.g., see [1, 21] for more detail.
In our simulation below, we use N = 48 subcarriers and 16-
QAM modulation.

The channel frequency response is estimated at the N pi-
lot subcarriers within each of the two pilot multicarrier sym-
bols. The estimates in the two slots are then linearly interpo-
lated in time towards the data positions. The M basis func-
tions, m = 1, . . . ,M , over subcarriers, p = 1, . . . , N , are
given by (B)p,m = φm(p), where φm(p) are the basis func-
tions (DPSS BEM in our case). For the data estimation, the
following scheme is used: at every subcarrier within every
multicarrier symbol, the MMSE equalizer (computed from
the channel estimates) estimates the data symbols, these data
estimates are mapped into the QAM constellation and turbo
decoded.

DPSS (across subcarriers) are the first M eigenvectors
(having largest eigenvalues) of a matrixM with elements

[M]i,j = sin[W (i− j)]/[W (i − j)], (8)

for some 0 < W < 1/2. For example, in application to
the LTE uplink [1], if the channel delays are limited to the
cyclic prefix of length τCP = 4.7 µs, the PDP is uniform in
the interval [0, τCP ], and the intercarrier spacing is fsc =
15 kHz, we haveW = τCP fsc/2 ≈ 0.035.
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Fig. 1. Performance of the channel estimator with adaptive regular-
ization in the channel with the EPA PDP.

We investigate the MSE channel estimation performance
and block error rate (BLER) detection performance obtained
in 104 simulation trials in scenarios with a Doppler spread of
7 Hz for the case when data are encoded with the turbo code
of rate 0.4. We also assume the Jakes’ model for the channel
time variations. We compare the performance provided by
the DPSS BEM with LMMSE, model-based, diagonal load-
ing, and adaptive regularization. In the simulation, we use
M = 8 basis functions and W = 0.038 in (8). The EPA,
EVA and ETU PDPs [22] are used for computing the channel
covariance and regularization in the LMMSE estimator. The
uniform PDP is used for computing the model-based regu-
larization and the adaptive regularization as explained above.
For the model-based regularization, for every channel (EPA,
EVA, ETU), the parameter τmax is adjusted to guarantee the
best performance. Thus, for this comparison, we use the opti-
mal model-based regularization. For the adaptive regulariza-
tion, τmax is from the set (7) and α = 1.6 is used.

Fig. 1 shows the MSE and BLER performance in the EPA
channel characterised by a small delay spread compared to
the CP length: τmax/τCP ≃ 0.087. The diagonal loading
is inferior to the other regularization schemes, whereas the
MSE performance is similar for the other three schemes. The
BLER performance provided by the adaptive regularization is
close to that of the LMMSE estimator, and, at BLER = 0.01,
it is only 0.25 dB away from the case of the perfect channel
knowledge (PCI).
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Fig. 2. Performance of the channel estimator with adaptive regular-
ization in the channel with the EVA PDP.

Fig. 2 shows the performance in the EVA channel. The de-
lay spread of the EVA channel is about half of the CP length:
τmax/τCP ≃ 0.534. It is again seen that the diagonal loading
is inferior to the other regularization schemes. The MSE per-
formance of the adaptive regularization and the model-based
regularization are similar and about 1 dB away from the MSE
performance of the LMMSE regularization. At BLER = 0.01,
the detection performance of the adaptive regularization is
close to that provided by the LMMSE estimator and only
0.5 dB away from the PCI case.

Fig. 3 shows the performance in the ETU channel,
where the delay spread is slightly longer than the CP length:
τmax/τCP ≃ 1.064. The diagonal loading is again inferior
to the other regularization schemes. The MSE performance
of the adaptive regularization and the model-based regular-
ization are similar and about 1.5 dB away from the LMMSE
performance. At BLER = 0.01, the detection performance
of the adaptive regularization is close to that provided by
the LMMSE estimator and only about 0.7 dB away from the
BLER in the case of PCI.

5. CONCLUSIONS

In this paper, we have considered the regularization in BEM-
based channel estimators. We have proposed an adaptive reg-
ularization scheme that chooses a regularization matrix with-
out any information on the channel statistics. This is based
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Fig. 3. Performance of the channel estimator with adaptive regular-
ization in the channel with the ETU PDP.

on the generalized cross-validation. The numerical results for
LTE uplink scenarios show that the proposed adaptive regu-
larization performs similarly to the model-based regulariza-
tion with a perfectly known channel delay spread. For the
EPA, EVA, and ETU channels, possessing different (small,
medium, and high) delay spreads, the detection performance
provided by the proposed channel estimator is close to that of
the receiver with perfect channel knowledge.
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