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ABSTRACT

It is well-known that the use of improper signaling schemes
can be beneficial in interference-limited networks. Here
we consider an underlay cognitive radio scenario, where a
multi-antenna primary user is protected by an interference
temperature constraint that ensures a prescribed rate require-
ment. We study how the interference temperature threshold
changes when the interference is constrained to be maximally
improper. Since the spatial structure of the impropriety is an
additional degree of freedom, we provide the maximum value
of the interference threshold that ensures the rate requirement.
We illustrate the potential payoffs of improper signaling with
some numerical examples, which show that a secondary user
can significantly improve its achievable rate with respect to
the proper signaling case.

Index Terms— Improper signaling, interference temper-
ature, underlay cognitive radio.

1. INTRODUCTION

It has been shown recently that improper Gaussian signal-
ing, i.e., the transmission of Gaussian signals whose real
and imaginary parts are correlated or have unequal power,
can be beneficial in interference-limited networks. This was
first observed in the degrees-of-freedom (DoF) study of the
interference channel (IC) [1], where improper signaling was
shown to increase the achievable DoF in the 3-user IC with
constant channel coefficients. Similar results were derived
for the 4-user IC in [2]. Several works have followed, show-
ing rate improvements and proposing improper signaling
schemes for different interference networks, such as the 2-
user single-input single-output (SISO) IC [3, 4], the K-user
SISO [5, 6] and multiple-input single-output (MISO) [7] ICs,
and the Z-IC [8]. Improper signaling has also been shown to
be beneficial in other scenarios, such as the broadcast chan-
nel with linear precoding [9], or the interference broadcast
channel [10].

This work analyzes the impact of improper signaling in
underlay cognitive radio (UCR) networks [11]. In UCR sce-
narios, the primary user (PU) is typically protected by an in-

terference temperature (IT) or interference power constraint,
so that the so-called secondary users (SUs) can access the
channel as long as they ensure that the interference power is
below the threshold [12, 13]. Since the performance of the
SUs is limited by interference (in this case, by the interfer-
ence they cause to the primary receivers), they may benefit
from transmitting improper Gaussian signals. In our previous
work [14, 15], we analyzed the payoffs of improper signal-
ing in a scenario comprised of an SU and a PU, both single-
antenna. In such a scenario we showed that, when the PU
transmits proper Gaussian signals and has a rate requirement,
the instantaneous rate of the SU increases, under certain con-
ditions, when we allow it to transmit improper signals.

In this paper we extend our analysis to the multi-antenna
case, where the spatial structure of the interference strongly
affects the PU performance, and, consequently, the IT thresh-
old. Thus, we derive the maximum value of the IT thresh-
old when the interference is constrained to be maximally im-
proper, which is achieved when the spatial structure of the im-
proper interference is the least detrimental to the PU. Conse-
quently, an SU operating under such a constraint must also de-
sign its transmission scheme such that the structure of the in-
terference’s impropriety matches the best-case signature. Fi-
nally, we illustrate the potential benefits in terms of SU rate
for a simple yet illustrative secondary network.

2. SYSTEM MODEL

2.1. Preliminaries

We start with some definitions and properties of improper
complex random vectors that will be used throughout the pa-
per. We refer the reader to [16] for a comprehensive treatment
of the subject.

The complementary covariance matrix of a complex ran-
dom vector x is defined as R̃xx = E{xxT }, where E{·} de-
notes expectation. If R̃xx = 0, we call x proper, otherwise
improper. Without loss of generality, the complementary co-
variance matrix can be expressed as [16, Section 3.2.3]

R̃xx = R
1
2
xxFCFTR

T
2
xx , (1)
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where Rxx = E{xxH} is the covariance matrix, F is a uni-
tary matrix, which we will call improper signature matrix, and
C is a diagonal matrix containing the circularity coefficients,
which measure the degree of impropriety and belong to the
range [0, 1]. If C = I, we call x maximally improper. Finally,
it is usually useful to express the second-order statistics of x
through the augmented covariance matrix, which is defined as

Rxx = E{xxH} =

(
Rxx R̃xx

R̃∗xx R∗xx

)
, (2)

where x = [xT xH ]T .

2.2. System description

Let us consider a multiple-input multiple-output (MIMO) PU
link, where both transmitter and receiver are equipped withN
antennas. Denoting by H ∈ CN×N and Q ∈ SN+ the MIMO
channel and transmit covariance matrix, respectively, and as-
suming that the receiver observes an interference covariance
matrix given by K ∈ SN+ , the achievable rate of this link can
be written as

R (K) = log2

∣∣∣I +
(
σ2I + K

)−1
HQHH

∣∣∣ , (3)

where σ2 is the noise power and SN+ denotes the set ofN×N
positive-semidefinite Hermitian matrices. Let us also assume
that this user has a minimum rate requirement to be satisfied,
expressed as

R (K) ≥ R̄ , (4)

for a given Q. An interesting question at this point is to de-
termine the maximum tolerable interference power in order
to achieve the foregoing rate constraint. That is, what is the
maximum t such that R (K) ≥ R̄ for all K ∈ SN+ satisfying
Tr (K) ≤ t? An answer to this question was already pro-
vided in [17], where it was shown that the problem is equiva-
lent to finding the worst-case interference covariance matrix,
for which a closed-form expression was derived. The interfer-
ence limit obtained this way provides the optimal protection
in terms of both primary and secondary networks when there
is a constraint on the total interference power. Notice that,
since t is maximized, this is the least stringent constraint for
the SU that ensures the PU rate with probability one (because
the rate is satisfied for all K). Nevertheless, for the above-
described scenario there are more degrees of freedom that can
be exploited to increase the interference power limit without
affecting the rate of the PU. Specifically, following the lines
of [14, 15] we study how a maximally improper interference
would affect the interference temperature limit.

In order to consider an improper interference, we have
to modify the model in (3) accordingly. For convenience,
we consider the augmented complex formulation, hence, and
making use of the differential entropy of an improper random
variable (see [16, Eq. (2.35)]), (3) turns into

R (K) =
1

2
log2

∣∣∣I +
(
σ2I + K

)−1
Q

H

∣∣∣ , (5)

where Q
H
∈ S2N+ and K ∈ S2N+ are the augmented covari-

ance matrices of the desired and interference signals, respec-
tively. Assuming that the PU transmits proper signals inde-
pendently of the statistics of the interference, the augmented
signal covariance matrix is given by

Q
H

=

(
HQHH 0

0 H∗Q∗HT

)
. (6)

Since we are now assuming an improper interference, the
augmented interference covariance matrix exhibits a non-
vanishing complementary covariance matrix, which, using
the parameterization (1), can be expressed as

K̃ = K
1
2 FCFTK

T
2 , (7)

where F and C are the improper signature matrix and the
matrix of circularity coefficients, respectively. In the sequel,
we focus on the maximally improper case.1 That is, we will
constrain the interference to be maximally improper and thus
C = I. Hence, we will express hereafter the rate of the pri-
mary user as a function of both K and F, i.e., R(K,F), for a
given Q.

3. INTERFERENCE TEMPERATURE THRESHOLD

In this section, we derive the maximum tolerable interference
power when the interference is maximally improper, such that
the constraint in (4) is satisfied. As it can be observed from the
structure of the interference complementary covariance ma-
trix in (7), the spatial structure of the impropriety, given by
F, affects the achievable rate of the PU. Here we consider a
limiting case that yields the maximum tolerable interference
threshold, tmax. From the standpoint of the secondary net-
work this implies a trade-off that must be further analyzed.
That is, the interference limit is higher but the secondary net-
work must transmit a maximally improper signal such that
the interference complementary covariance matrix matches
the structure of the optimal improper signature. This trade-
off will be studied numerically in the next section.

The interference power limit for the maximally improper
case, tmax, can be computed through the following optimiza-
tion problem

P : maximize
t

t ,

subject to max
F

R(K,F) ≥ R̄ , ∀ K ∈ Kt ,

where the set Kt is defined as

Kt = {K � 0 : Tr(K) ≤ t} . (8)

Let us now present the following lemma, which provides
some insights into the optimal solution of P .

1It has been shown [14] that, whenever improper signaling is beneficial,
maximally improper signaling is optimal.
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Lemma 1. For a given Q, let φ1 ≥ φ2 ≥ . . . ≥ φN and Γ
be the eigenvalues and the matrix of eigenvectors of HQHH ,
respectively. Then,

min
K∈Kt

max
F∈UN

R (K,F) =

min∑
λi≤t

λi≥0

N∑
i=1

1

2
log2

[
1 +

φi
σ2

(
1 +

σ2 + φi
σ2 + 2λi

)]
, (9)

where UN is the set ofN×N unitary matrices. The improper
signature matrix leading to (9) is F = Γ.

Proof. Due to the lack of space, we only provide a sketch of
the proof. Let HQHH = ΓΦΓH be the eigenvalue decom-
position (EVD). Using majorization (we refer the interested
reader to [18]), it can be shown that F = ΓP

1
2 and K =

ΓΛΓH hold for the optimal solution, where P is a symmetric
permutation matrix and Λ = diag(λ1, . . . , λN ) is the ma-
trix of eigenvalues of K. Consequently K̃ = ΓΛ

1
2 PΛ

1
2 ΓT ,

which yields

min
K∈Kt

max
F∈UN

R (K,F) = min∑
λi≤t

λi≥0

max
π

1

2

N∑
i=1

log2

[
1+

σ2
(
φi + φπ(i)

)
+ φiφπ(i) + λπ(i)φi + λiφπ(i)

σ2
(
σ2 + λi + λπ(i)

) ]
, (10)

where π is a symmetric permutation, i.e., π(i) = j ⇔
π(j) = i. Notice that π selects those pairs of signal modes
that are correlated in the improper sense. To prove the lemma,
we have to show that the optimal permutation satisfies π(i) =
i, i = 1, . . . , N . To this end, let us consider an arbitrary per-
mutation such that π(i) = j (and π(j) = i), i 6= j. The ith
and jth contributions to the summation in (10) are given by

rij =
1

2
log2

[
1+

σ2
(
φi + φπ(i)

)
+ φiφπ(i) + λπ(i)φi + λiφπ(i)

σ2
(
σ2 + λi + λπ(i)

) ]

+
1

2
log2

[
1+

σ2
(
φj + φπ(j)

)
+ φjφπ(j) + λπ(j)φj + λjφπ(j)

σ2
(
σ2 + λj + λπ(j)

) ]
.

(11)

Now we show that rij increases if we take permutation π′,
with π′(i) = i and π′(j) = j. Notice that applying π′ is
equivalent to swapping φi and λi of the first term in (11) with
those of the second term. To this end, let us first swap φi
with φj . Comparing the derivatives of the first and second
terms of (11) with respect to φi and φj , respectively, it fol-
lows that rij increases if φi+λi > φj +λj . Assuming, with-
out loss of generality, that φi ≥ φj , it is easy to see through

(11) that λi ≥ λj must hold for the optimal solution, hence
φi + λi > φj + λj holds and, consequently, rij increases.
Second, once φi and φj have been swapped, it can be shown
by taking the derivatives that swapping λi with λj keeps rij
unchanged. As a result, π′ increases the cost function with
respect to π. Applying this procedure to all other pairs, we
obtain that π(i) = i, i = 1, . . . , N is optimal, which yields
(9) and concludes the proof.

Lemma 1 can be interpreted as follows. For the opti-
mal improper signature, the interference at each transmission
mode is a maximally improper signal, but there is no corre-
lation among different signal modes. In other words, the PU
transmission can be decomposed into a set ofN signal modes
each of them affected by a maximally improper interference.
Now we formalize the solution of P in the following theorem.

Theorem 1. For a given Q, let φ1 ≥ φ2 ≥ . . . ≥ φN and Γ
be the eigenvalues and the matrix of eigenvectors of HQHH ,
respectively. Then, the optimal solution of P is

tmax = Tr (Kmax) , (12)

where Kmax = ΓΛmaxΓ
H is the worst-case interference co-

variance matrix. Λmax is a positive diagonal matrix whose
entries are given by a multilevel water-filling as

λmax[i] =
1

2

[√
φi

(
1

4
φi + µ

)
−
(

1

2
φi + σ2

)]+
, (13)

where µ is such that the rate constraint holds with equality.

Proof. By [17, Lemma 1], the optimal solution of P can be
obtained through the following equivalent problem

Peq : minimize
t,K

t ,

subject to max
F

R(K,F) ≤ R̄ ,

K ∈ Kt .

Notice that the above problem consists of finding the worst-
case interference covariance matrix, K. Consequently, by
Lemma 1, Peq can equivalently be written as

P̃eq: minimize
{λi}Ni=1

N∑
i=1

λi ,

subject to
N∑
i=1

1

2
log2

[
1 +

φi
σ2

(
1 +

σ2 + φi
σ2 + 2λi

)]
≤ R̄,

λi ≥ 0 , i = 1, . . . , N .

Since the above problem is convex and satisfies Slater’s con-
dition [19], we can find its optimal solution by solving the
dual problem. Finally, the Karush-Kuhn-Tucker (KKT) con-
ditions of P̃eq yield (12) and (13), which concludes the proof.
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4. NUMERICAL EVALUATION

In this section, we provide some numerical examples showing
the potential benefits of an improper interference in terms of
SU rate. To this end, we consider a simple secondary network,
comprised solely of a point-to-point SU equipped with N an-
tennas at both sides of the link (i.e., same model as the PU
link), hence the whole network can be regarded as a 2-user
IC. The transmit covariance matrix of the SU is optimized
to maximize its achievable rate subject to the transmit power
and interference temperature constraints. As a suboptimal but
simple procedure, we first optimize the transmit covariance
matrix considering a proper transmission, and then adjust the
transmit complementary covariance matrix to match the im-
proper signature F = Γ.

We define the transmit signal-to-noise ratio (SNR) of the
PU and SU respectively as SNRPU = PPU

σ2 and SNRSU = PSU
σ2 ,

being PPU and PSU are the PU and SU power budgets, respec-
tively, and we take σ2 = 1 without loss of generality. We con-
sider that each entry of the N × N channel matrices is inde-
pendently distributed as a proper complex Gaussian random
variable with zero mean and unit variance, except for the SU-
PU channel, whose variance is set to σ2

I . For all simulations,
we will consider N = 4, SNRSU = 20 dB and R̄ = αR(0),
with 0 ≤ α ≤ 1.

First we compare the IT thresholds for the proper and
maximally improper cases. Figure 1 shows the ratio between
proper and improper signaling IT as a function of α, where
a significant increase can be observed, especially for low val-
ues of α and high SNRPU values. To show the impact on
the rates, Fig. 2 depicts the achievable rate of three differ-
ent transmission schemes: the conventional proper scheme,
the maximally improper scheme derived in Section 3, and
an adaptative scheme; for α = 0.6 and two different SU-PU
channel gains: σ2

I = 1 and σ2
I = 10. The adaptative scheme

follows the transmission scheme leading to the highest rate,
i.e., proper or maximally improper. Notice that this scheme
can easily be performed if the PU informs the SU about the
two IT thresholds, so that no additional channel state informa-
tion (CSI) is required at the SU. For σ2

I = 1, maximally im-
proper signaling provides significant gains for SNRSU higher
than 10 dB. For low SNR (low power budget), improper sig-
naling does not yield any gain on average since proper sig-
naling permits maximum power transmission in most channel
realizations, which does not leave much room for improve-
ment. Notice, however, that the adaptative scheme is always
beneficial and does not require any additional CSI. When the
interference is more significant (σ2

I = 10), improper signal-
ing provides a substantial increase in achievable rate in the
whole SNR regime. Indeed, the proper scheme achieves a
very low rate since the interference level at the PU is too high.
In such a case, the maximally improper signaling scheme is
much more capable of handling the interference, which is in
agreement with the results of our previous work [14].
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Fig. 1. Difference between the ITs of improper and proper
signaling, for N = 4 and different values of SNRPU.
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Fig. 2. SU rate for N = 4, α = 0.6 and SNRPU = 20 dB.

5. CONCLUSION

In this paper, we have studied how the IT threshold for a
MIMO PU changes when we constrain the interference to be
maximally improper. We have observed that the improper sig-
nature matrix, which controls the spatial structure of the im-
propriety, affects the interference power threshold. Therefore,
we have derived the maximum tolerable interference power
for the optimal improper signature, which has resulted in a
maximally improper interference at each eigenmode of the
PU. Additionally, the interference must be further constrained
to match this specific improper signature matrix. Simulations
have shown that this maximally improper scheme may pro-
vide significant improvements with respect to the proper sig-
naling case. In light of the results, we will consider in fu-
ture work the analysis of joint spatial-improper shaping con-
straints, to further improve the performance over conventional
proper and spatially-unconstrained interference.
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