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ABSTRACT
We formulate and study a multi-user multi-armed bandit (MAB)
problem that exploits the temporal-spatial reuse of primary user (PU)
channels so that secondary users (SUs) who do not interfere with
each other can make use of the same PU channel. We first propose
a centralized channel allocation policy that has logarithmic regret,
but requires a central processor to solve a NP-complete optimization
problem at exponentially increasing time intervals. To avoid the high
computation complexity at the central processor and the need for SU
synchronization, we propose a heuristic distributed policy that incor-
porates channel access rank learning in a local procedure at each SU
at the cost of a higher regret. We compare the performance of our
proposed policies with other distributed policies recently proposed
for opportunistic spectrum access. Simulations suggest that our pro-
posed policies significantly outperform the benchmark algorithms
when spectrum temporal-spatial reuse is allowed.

Index Terms— Cognitive radio, spectrum reuse, multi-armed
bandit.

1. INTRODUCTION

In cognitive radio networks (CRNs), opportunistic spectrum access
(OSA) alleviates the spectrum under-utilization problem. It has been
extensively studied at the physical (PHY) and medium access control
(MAC) layers, and various temporal [1, 2], spatial [3, 4], or spatial-
temporal [5, 6] spectrum-sensing algorithms have been proposed to
detect and utilize spectrum opportunities temporally and spatially
with acceptable interference to PUs. To study the interactions among
SUs in a distributed manner, game theory is widely used to design
efficient distributed OSAmechanisms [7,8]. However, most of these
works do not exploit spatial spectrum reuse and assume that each
SU interferes with every other SU in the CRN. To allow for spatial
spectrum sharing amongst the SUs, graphical game algorithms have
been proposed to investigate spatial reuse of the spectrum [9, 10].
However, these works assume that some information about PUs like
the location or channel usage of PUs is known by all the SUs. Multi-
armed bandit (MAB) techniques have been applied for OSA when
PU channel information is unknown [7, 11–13]. All these methods
assume that all SUs interfere with each other if they use the same
channel, and spatial reuse of channels was not addressed. In our
previous work [14], a three-step distributed channel allocation policy
was proposed to exploit the temporal-spatial reuse of PU channels.
However, it requires synchronization amongst the SUs.

If SUs are constrained to using different channels at the same
time due to interference between them, as assumed in [11, 15], then
the optimal allocation is to assign each SU a different channel with
the best availability. However, spatially separated SUs can share
the same channel without significant interference with each other.

For example, consider the scenario depicted in Figure 1, where the
expected network reward is given by the expected total number of
interference-free channel uses by the SUs. An edge between two
SUs indicates that they interfere with each other. Then, without in-
terfering with each other, SU 1 and SU 4 can reuse the same PU
channel with the highest idle probability. The scenario (iii) in Figure
1 achieves the highest expected network reward.

Fig. 1. Spatial spectrum reuse in a CRN with multiple SUs.

In this paper, we propose a centralized policy that uses a cen-
tral processor to optimize the channel access ranks of the SUs at
exponentially increasing time intervals, based on the idle probabil-
ity estimates of an arbitrary SU. SUs then perform a local random
ε-greedy channel learning algorithm. We call this the Centralized
Channel Allocation (CCA) policy. To overcome the high computa-
tion complexity at the central processor in the CCA policy and to
avoid the need for SU synchronization in the three-step distributed
channel allocation policy we have previously developed in [14], we
propose a Distributed Access Rank Learning (DARL) policy that
embeds the channel access rank determination in the channel statis-
tics learning process. We compare our policies with the random ac-
cess policy [15], the time-division fair sharing (TDFS) policy [11]
and the adaptive randomization policy [15]. Our simulation results
suggest that our policies perform significantly better in terms of av-
erage regret than the benchmark policies.

The rest of this paper is organized as follows. In Section 2, we
introduce our system model and problem formulation. We propose
the Centralized Channel Allocation (CCA) policy in Section 3 and
the Distributed Access Rank Learning (DARL) policy in Section 4.
In Section 5, we present simulation results and we conclude in Sec-
tion 6.

2. PROBLEM FORMULATION

Suppose that there are M ≥ 2 secondary users and N orthogo-
nal channels in a CRN. We model the SU network as a graph G =
(V,E), where V is the set of SUs, and E is a set of edges. Two SUs
are connected by an edge if the mutual interference between them
is above a predefined threshold. If two SUs are not connected via
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an edge, then we assume that they can utilize the same PU channel
simultaneously.

LetN be the set of channels andM be the set of SUs. We divide
time into equal intervals. In each time slot n, each channel j ∈ N is
idle with probability μj ∈ (0, 1), independent of all other channels.
Without loss of generality, we assume that μ1 > μ2 ≥ μ3 ≥ . . . ≥
μN (SUs are not aware of this ordering). For each j ∈ N , we use
Sj(n) to denote the channel state of a channel j in time slot n with
Sj(n) = 1 if the channel j is idle and 0 otherwise.

Without knowing the channel idle probabilities, each SU needs
to learn them through their sensing observations. In each time slot
n, each SU can only sense and access one channel. LetXi,j(n) = 1
if SU i chooses channel j and senses that it is idle, and Xi,j(n) = 0
otherwise. We assume that channel sensing is perfect for all SUs so
that Xi,j(n) = Sj(n) if channel j is chosen by SU i at time slot n.
Let Yi,j(n) be the reward of a SU i from accessing a channel j in
slot n after sensing it free. LetMi be the set of neighboring SUs of
the SU i in the graph G, not including SU i itself. Yi,j(n) = 1 if
channel j is idle and no other k ∈ Mi transmits over it in the same
time slot n and 0 otherwise.

We are interested to design a policy ψ to learn the channel idle
probabilities so as to maximize the total expected number of suc-
cessful transmissions of all SUs by exploiting spatial channel reuse
among SUs. The policy ψ is a rule that determines which chan-
nel ψi(n) ∈ N SU i chooses to sense in time slot n. The choice
ψi(n) can be made based on the sensing results of SU i at previ-
ous time slots 1, 2, . . . , n − 1, and on the previous channel choices
{ψ(i, l) : for l < n}. If the channel ψi(n) is idle, SU iwill transmit
over the channel. At the end of each time slot n, each SU is assumed
to know whether it has transmitted successfully or not (e.g., through
an acknowledgment from the SU receiver). Let Ti,j(n) be the total
number of time slots that the SU i has sensed the channel j in n time
slots, and let Vi,j(n) =

∑
l≤n Yi,j(l) be the total number of time

slots that the channel j is successfully accessed by SU i up to time
slot n.

The regret of the policy ψ until time slot n is defined as the
difference between the total reward of a genie-aided rule and the
expected reward of all SUs given by

R(n, ψ) = n

M∑
i=1

μπ∗(i) −
M∑
i=1

N∑
j=1

μjE[Vi,j(n)], (1)

where π∗ : {1, . . . ,M} �→ {1, . . . , N} is the optimal channel allo-
cation if all channel idle probabilities are known, i.e., π∗(i) = j if
and only if xij = 1, where xij , for all i ∈ M and j ∈ N are the
solutions to the following optimization problem:

(P0) max
xij

M∑
i=1

N∑
j=1

xijμj (2)

s.t. xij +
∑

k∈Mi

xkj ≤ 1, ∀i ∈M, j ∈ N , (3)

N∑
j=1

xij ≤ 1, ∀i ∈M, (4)

xij ∈ {0, 1}, ∀i ∈ M, j ∈ N . (5)

The above maximization problem is an integer linear program,
which corresponds to a NP-complete decision problem (of which
finding if there exists an independent set in the graph G for a given
size is a special case [16]). In general, even if the channel idle prob-
abilities are known a priori, it is analytically difficult for a genie to

find the optimal channel allocations. To ensure that optimization is
done within a reasonable amount of time, the genie can adopt an
approximate method [17], which however leads to a linear regret
as the number of time slots n → ∞. For a distributed policy that
does not know the channel idle probabilities a priori, the problem
is even harder, and in general we cannot hope to learn the channel
probabilities and an optimal channel allocation with sub-linear re-
gret, unlike other MAB problems in which logarithmic regrets are
common [11, 15].

For any channel allocation π : {1, . . . ,M} �→ {1, . . . , N},
we say that π(i) is the channel access rank of SU i because of the
assumption that μ1 > μ2 ≥ . . . ≥ μN . Our main idea is to learn
the optimal channel access rank of each SU and the idle probability
of each channel in order to optimize the regret. In the following, we
propose a centralized policy that has asymptotic logarithmic regret,
but requires solving an analytically difficult optimization problem
like (P0) at exponentially increasing time intervals. We also propose
a heuristic distributed policy, which overcomes complexity of the
centralized policy but has linear regret in general.

3. CENTRALIZED CHANNEL ALLOCATION (CCA)
POLICY

In this section, we propose a centralized policy ψCCA, and show that
it has asymptotic log regret. We assume that there is a central proces-
sor in the CRN capable of solving problem (P0) with the true channel
idle probabilities μj , j = 1, . . . , N , replaced by empirical estimates
from an arbitrary SU. We call this optimization problem (P̂0). How-
ever, since (P̂0) corresponds to a NP-complete decision problem,
we suppose that the central processor only performs this optimiza-
tion at specific irregular time instances (see Figure 2) instead of at
every time slot. For a time horizon n, let tk, k = 1, . . . , ξ(n), be
the ξ(n) time instances at which the central processor solves (P̂0)
with updated empirical estimates of μj , j = 1, . . . , N . We assume
t1 <∞, i.e., there is at least one optimization time instance.

t1 t2 t3 tξ(n)−1 tξ(n) tξ(n)+1 = n

l0 l1

...

lξ(n)−1 lξ(n)l2

t0 = 1

Fig. 2. Optimization time instances for ψCCA.

For k = 0, . . . , ξ(n), let lk = tk+1 − tk − 1, where t0 = 1
and tξ(n)+1 = n, be the number of time slots starting from the
k-th optimization, and before the next optimization by the central
processor. Let X̄i,j(n) =

∑n

k=1 Xi,j(k)/Ti,j(n) be the empiri-
cal estimate of the idle probability of channel j by SU i. At each
time instance tk, k = 1, . . . , ξ(n), an arbitrarily chosen SU i sends
{X̄i,j(tk) : j ∈ N} to the central processor, which replaces μj with
X̄i,j(tk) in problem (P0), and finds the optimal or near-optimal so-
lution using the branch and bound algorithm [17]. Let {ri(tk) : i ∈
M} be the channel access ranks found by the central processor (i.e.,
ri(tk) = j iff xij = 1 in the solution of (P̂0). These ranks are then
communicated to the SUs, which utilizes their assigned ranks in a
local random ε-greedy channel learning algorithm: In each time slot
of the channel learning period, each SU i chooses to sense a chan-
nel j ∈ N with probability ε, and with probability 1 − ε chooses
the ri(tk)-th best channel according to its empirical idle probability
estimates {X̄i,j(tk) : j ∈ N}. This learning algorithm is an ex-
tension of the work in [18]. Let Δ1 = minj=1,...,N−1 |μj − μj+1|
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and ρi(n) be the channel chosen by SU i in time slot n. We call the
above procedure the Centralized Channel Allocation Policy ψCCA,
which is described in Algorithms 1 and 2.

Algorithm 1 Centralized channel allocation policy ψCCA

1: Input: SU interference network. At each time tk, k =
1, . . . , ξ(n), empirical idle probability estimates {X̄i,j(tk) :
j ∈ N} from an arbitrarily chosen SU i.

2: Output: At each time tk, k = 1, . . . , ξ(n), channel access
ranks ri(tk), i = 1, . . . ,M

3: for n = t1, t2, . . . , tξ(n) do
4: Central processor chooses an arbitrary SU i, which sends it

{X̄i,j(tk) : j ∈ N}.
5: Central processor solves the optimization problem (P̂0), and

for each i ∈M, sets ri(tk) = j if xij = 1.
6: Central processor sends ri(tk) to each SU i, i ∈ M.
7: Each SU performs the random ε-greedy channel learning al-

gorithm in Algorithm 2.
8: end for

Algorithm 2 Random ε-greedy channel learning at each SU i

1: Input: 0 < γ < min{1,Δ1}, δ > max{2, 5γ2}
2: for n ≥ 1 do
3: Set εn = min{1, δN

γ2n
}.

4: Let t = max{tk, k ≥ 1 : tk ≤ n}.
5: With probability 1−εn , let ρi(n) be a channel with the ri(t)-

th highest empirical idle probability estimate (with ties bro-
ken randomly), otherwise let ρi(n) be chosen uniformly at
random from the channel set N .

6: if channel ρi(n) is sensed to be PU-free then
7: SU i transmits over channel ρi(n) and sets Xi,ρi(n)(n) =

1.
8: else
9: SetXi,ρi(n)(n) = 0.
10: end if
11: Set

Ti,ρi(n)(n) = Ti,ρi(n)(n− 1) + 1,

X̄i,ρi(n)(n) =
X̄i,ρi(n)(n− 1)Ti,ρi(n)(n− 1) +Xi,ρi(n)(n)

Ti,ρi(n)(n)
.

12: For all j 	= ρi(n), set Ti,j(n) = Ti,j(n− 1) and X̄i,j(n) =
X̄i,j(n− 1).

13: end for

The following Theorem 1 shows that the regret using ψCCA is
order-optimal for appropriately chosen optimization time instances.
We omit the proof due to space constraints.

Theorem 1 If lk > lk−1 for 1 < k < ξ(n) and lk ≤ clk−1 for all
k ≥ 2 and some c > 0, then R(n, ψCCA) ∈ Θ(log n).

4. DISTRIBUTED CHANNEL ACCESS RANKING AND
LEARNING (DARL) POLICY

In this section, we propose a heuristic distributed policy to perform
channel access ranking and learning. We know that finding the op-
timal channel access ranking is still NP-complete. However, as dis-
cussed in [14], the genie-aided channel allocation in (P0) becomes

a graph coloring problem in which we wish to partition the graph
into disjoint maximal independent sets I1, . . . , Iχ(G) (shown in non-
increasing order), where χ(G) is known as the chromatic number of
the graph G [19]. The SUs assigned to the same independent set are
allocated the same channel, with a larger independent set being as-
signed a channel with a higher idle probability. Therefore, the regret
(1) can then be equivalently written as

R(n, ψ) = n

χ(G)∑
j=1

μj |Ij | −
M∑
i=1

N∑
j=1

μjE[Vi,j(n)],

where |Ij | is the number of SUs in the maximal independent set Ij .
To reduce the overhead due to SU synchronization in the three-

step distributed channel allocation policy [14], we propose a dis-
tributed policy DARL, denoted as ψDARL, which integrates the first
two stages of the distributed policy in [14] into the channel statis-
tics learning process (see Algorithm 3). At the start of DARL, the
channel access ranks of SUs ri(1), i ∈ M are all set to be 1. In
subsequent time slots n > 1, if there is no collision for SU i in the
previous time slot, it continues to use the same channel access rank
as ri(n−1). Otherwise, it generates a random number λi uniformly
distributed in [0, 1] and keeps on using the same channel access rank
if λi has the largest value among all its neighbors who also have col-
lisions in the previous time slot. If its random number λi is not the
largest value, SU i is allocated a channel access rank uniformly and
randomly from {1, . . . , N}. SU i then performs the ε-greedy chan-
nel learning process. Since there is a higher likelihood for DARL to
assign incorrect channel access ranks to the SUs, we expect DARL
to have higher regret than CCA, as verified by simulations in Section
5.

The following Proposition 1 shows that the random access pol-
icy [15] denoted as ψrand, the time-division fair sharing (TDFS) pol-
icy [11] denoted as ψTDFS, the adaptive randomization policy [15]
denoted as ψadapt and our proposed policy ψDARL all have Θ(n) re-
gret under spatial spectrum reuse on an incomplete graph in general.
The proof is omitted due to space constraints.

Proposition 1 Under spatial spectrum reuse, if the graph G is in-
complete and has a connected component of size at least two, then
ψrand, ψTDFS, ψadapt, and ψDARL each has Θ(n) regret.

5. SIMULATION RESULTS

In this section, we verify the performance of our proposed policies
by simulations in large size random graphs that have M = 100 SUs
and N = 100 orthogonal PU channels. The idle probabilities of the
PU channels are [0.9, 0.8, 0.7, 0.6, 0.5, 0.495, 0.490, . . . , 0.025].
For ψCCA, we let l0 = 2 and lk = 2lk−1 for k ≥ 1. We set δ = 5.1
and γ = 0.1. We evaluate the performance of our proposed policies
and that of ψrand, ψTDFS and ψadapt on the following:
(i) Erdös-Rényi (ER) graphs: 500 instances of Erdos-Renyi ran-

dom graphs withM nodes and different probabilities of attach-
ment [20]

(ii) Random connection (RC) graphs: 500 random graphs with M
nodes and different number of edges. Edges are generated se-
quentially, and each edge is formed by choosing two distinct
nodes uniformly at random and connecting them if they are
not already connected.

We show the regrets in Figure 3 and Figure 4 when the graph is a
randomly generated ER graph with attachment probability 0.05 and
a RC graph with 200 edges. We compare the average regrets using
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Algorithm 3 Distributed access rank learning (DARL) ψDARL

1: Input: 0 < γ < min{1,Δ1}, δ > max{2, 5γ2}
2: Initialization: channel access rank ri(1) = 1, for all i ∈M.
3: for n ≥ 1 do
4: Set εn = min{1, δN

γ2n
}.

5: if there was a collision in previous time slot n− 1 then
6: Broadcast ri(n− 1) to j ∈Mi.
7: Generate a random number λi uniformly distributed in

[0, 1] and broadcasts λi to all j ∈Mi.
8: Let M̄i be the set of SUs j ∈ Mi that also have collisions

in time slot n− 1.
9: if λi ≥ maxj∈M̄i

λj then
10: Set ri(n) = ri(n− 1).
11: else
12: Set ri(n) = min

{
{1, . . . , N}\{rj(n− 1) : j ∈ M̄i}

}
.

13: end if
14: else
15: Set ri(n) = ri(n− 1).
16: end if
17: With probability 1−εn , let ρi(n) be a channel with the ri(t)-

th highest empirical idle probability estimate (with ties bro-
ken randomly), otherwise let ρi(n) be chosen uniformly at
random from the channel set N .

18: if channel ρi(n) is sensed to be PU-free then
19: SU i transmits over channel ρi(n) and sets Xi,ρi(n)(n) =

1.
20: else
21: SetXi,ρi(n)(n) = 0.
22: end if
23: Set

Ti,ρi(n)(n) = Ti,ρi(n)(n− 1) + 1,

X̄i,ρi(n)(n) =
X̄i,ρi(n)(n− 1)Ti,ρi(n)(n− 1) +Xi,ρi(n)(n)

Ti,ρi(n)(n)
.

24: For all j 	= ρi(n), set Ti,j(n) = Ti,j(n− 1) and X̄i,j(n) =
X̄i,j(n− 1).

25: end for

500 trials for all the policies. We observe that ψCCA outperforms the
policies ψrand, ψTDFS and ψadapt, where the regret of ψCCA is approx-
imately a constant multiple of log n and regrets using other policies
on both types of random graphs increase linearly over time. We also
note that, without SU synchronization, ψDARL has worse regret than
ψCCA, but still performs better than the other benchmark policies.

6. CONCLUSION

In this paper, we have investigated temporal-spatial channel reuse
in cognitive radio networks using a multi-user MAB approach. We
have proposed a centralized channel allocation policy for finding an
optimal channel allocation and learning the statistics of the chan-
nels. To avoid the requirement of centralized processing and syn-
chronization amongst the SUs, we proposed a heuristic distributed
policy which let each SU determine their channel access ranks lo-
cally. Simulation results suggest that our proposed policies outper-
form current policies when spatial channel reuse is considered. Fu-
ture work includes designing policies for mobile SUs where channel
availabilities differ across the SU network.
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Fig. 3. Normalized regret R(n,ψ)
log n

vs. time slot n on ER graphs.
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vs. time slot n on RC graphs.

7. ACKNOWLEDGEMENT

This work was supported in part by the Singapore Ministry of Edu-
cation Academic Research Fund Tier 2 grants MOE2013-T2-2-006
and MOE2014-T2-1-028.

8. REFERENCES

[1] D. Duan, L. Yang, and J. C. Principe, “Cooperative diversity
of spectrum sensing for cognitive radio systems,” IEEE Trans.
Signal Process., vol. 58, no. 6, pp. 3218–3227, 2010.

[2] G. Ozcan, M. cenk Gursoy, and S. Gezici, “Error rate anal-
ysis of cognitive radio transmissions with imperfect channel
sensing,” IEEE Trans. Wireless Commun., vol. 13, no. 3, pp.
1642–1655, 2014.

[3] S. M. Mishra, Maximizing available spectrum for cognitive
radios, Ph.D. thesis, UC Berkeley, 2010.

[4] S. M. Yu and S.-L. Kim, “Optimal detection of spatial oppor-
tunity in wireless networks,” IEEE Commun. Lett., vol. 15, no.
4, pp. 395–397, 2011.

[5] Q. Wu, G. Ding, J. Wang, and Y. Yao, “Spatial-temporal op-
portunity detection for spectrum heterogeneous cognitive radio

3664



networks: Two-dimensional sensing,” IEEE Trans. Wireless
Commun., vol. 12, pp. 516–526, 2013.

[6] Y. Zhang, W. P. Tay, K. H. Li, and D. Gaïti, “Distributed
boundary estimation for spectrum sensing in cognitive radio
networks,” IEEE J. Sel. Areas Commun., vol. 32, no. 11, pp.
1–13, 2014.

[7] M. Maskery, V. Krishnamurthy, and Q. Zhao, “Decentralized
dynamic spectrum access for cognitive radios: cooperative de-
sign of a non-cooperative game,” IEEE Trans. Commun., vol.
57, no. 2, pp. 459–469, 2009.

[8] Y. Xu, J. Wang, Q. Wu, A. Anpalagan, and Y. D. Yao, “Op-
portunistic spectrum access in unknown dynamic environment:
a game-theoretic stochastic learning solution,” IEEE Trans.
Wireless Commun., vol. 11, no. 4, pp. 1380–1391, 2012.

[9] X. Chen and J. Huang, “Distributed spectrum access with spa-
tial reuse,” IEEE J. Sel. Areas Commun., vol. 31, no. 3, pp.
593–603, 2013.

[10] Y. Xu, Q. Wu, L. Shen, J. Wang, and A. Anpalagan, “Op-
portunistic spectrum access with spatial reuse: graphical game
and uncoupled learning solutions,” IEEE Trans. Wireless Com-
mun., vol. 12, no. 10, pp. 4814–4826, 2013.

[11] K. Liu and Q. Zhao, “Distributed learning in multi-armed ban-
dit with multiple players,” IEEE Trans. Signal Process., vol.
58, no. 11, pp. 5667–5681, 2010.

[12] M. Zandi and M. Dong, “Learning-stage based decentralized
adaptive access policy for dynamic spectrum access,” in IEEE
ICASSP, 2013.

[13] Y. Gai and B. Krishnamachari, “Distributed stochastic on-
line learning policies for opportunistic spectrum access,” IEEE
Trans. Signal Process., 2014.

[14] Y. Zhang, W. P. Tay, K. H. Li, M. Esseghir, and D. Gaïti,
“Distributed opportunistic spectrum access with spatial reuse
in cognitive radio networks,” in IEEE GlobalSIP, 2014.

[15] A. Anandkumar, N. Michael, A. K. Tang, and A. Swami, “Dis-
tributed algorithms for learning and cognitive medium access
with logarithmic regret,” IEEE J. Sel. Areas Commun., vol. 29,
no. 4, pp. 731–745, 2011.

[16] R. M. Karp, “Reducibility among combinatorial problems,”
Complexity of Computer Computations, pp. 85–103, 1972.

[17] L. A.Wolsey, Integer Programming, Wiley-Interscience, 1998.
[18] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis

of the multiarmed bandit problem,” Mach. Learn., vol. 47, no.
2-3, pp. 235–256, 2002.

[19] N. Deo, Graph Theory with Applications to Engineering and
Computer Science, PHI Learning Pvt. Ltd., 2004.

[20] P. Erdös and A. Rényi, “On random graphs,” Publicationes
Mathematicae Debrecen, vol. 6, pp. 290–297, 1959.

3665


