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ABSTRACT
We consider a multi-pair two-way amplify-and-forward relaying sys-
tem with a massive antenna array at the relay and estimated channel
state information, assuming maximum-ratio combining/transmission
processing. Closed-form approximations of the sum spectral effi-
ciency are developed and simple analytical power scaling laws are
presented, which reveal a fundamental trade-off between the trans-
mit powers of each user/the relay and of each pilot symbol. Finally,
the optimal power allocation problem is studied.

Index Terms— Massive MIMO, multi-pair, power scaling law,
two-way relaying.

1. INTRODUCTION

Due to the high spectral efficiency, multi-pair two-way relaying sys-
tems have attracted a great deal of research attention from both acade-
mia and industry [1–4]. The key challenge for the successful imple-
mentation of such systems is to properly compensate for the inter-
pair interference. Many sophisticated techniques have been pro-
posed in literature, including dirty-paper coding [5] and interference
alignment [6]. However, these techniques significantly increase the
complexity of the system.

Recently, the idea of using massive antenna arrays at the relay
to mitigate inter-pair interference has been proposed [2, 4]. In [2],
the spectral efficiency of the amplify-and-forward (AF) protocol was
studied for both maximum ratio (MR) combining/transmission and
zero-forcing (ZF) combining/transmission schemes. In parallel, [4]
presented a closed-form approximation of the ergodic rate with the
MR scheme, and then studied the problem of optimal user pair selec-
tion. However, both works assume the availability of perfect chan-
nel state information (CSI) at the relay, which is difficult to acquire
in practice due to the finite signal-to-noise ratio (SNR) and limit-
ed channel coherence that cause non-negligible channel estimation
errors.

Motivated by this, this paper studies the performance of a multi-
pair two-way relaying system by considering imperfect CSI. The
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main contributions of this paper include: 1) We analytically char-
acterize a lower bound on the spectral efficiency employing the MR
scheme; 2) We derive simple power scaling laws, which general-
ize the results of [2, 4, 7]. Also, the fundamental trade-off between
the transmit powers of each user/the relay and the transmit power of
each pilot symbol is revealed; 3) By assuming the large scale fading
is the same for all the links, we devise an optimal power allocation
policy for the relay and each user, which maximizes the sum spectral
efficiency of the system.

Notation: We use (·)H , (·)∗, and (·)T to denote the conjugate
transpose, the conjugate, and the transpose, respectively. Also, || · ||
represents the Euclidian 2-norm, and | · | is the absolute value. In
addition, x ∼ CN (0,Σ) denotes a circularly symmetric complex
Gaussian vector x with zero mean and covariance matrix Σ. Finally,
the statistical expectation operator is represented by E{·}.

2. SYSTEM MODEL

Consider a multi-pair two-way relaying system, where N pairs of
single-antenna users, denoted as TA,i and TB,i, for i = 1, . . . , N ,
intend to exchange information within each pair, under the assistance
of a shared relay with M antennas, denoted as TR. We assume that
the direct links between TA,i and TB,i do not exist due to heavy
shadowing and path-loss [3]. Also, the relay operates in the half-
duplex mode, i.e., it cannot transmit and receive simultaneously.

The system operates in a time-division duplex mode where chan-
nel reciprocity is assumed to hold. Therefore, the uplink and down-
link channels between TA,i and TR can be denoted as gAR,i ∈
CM×1 and gT

AR,i ∈ C1×M , respectively. Similarly, the uplink and
downlink channels between TB,i and TR are denoted as gRB,i ∈
CM×1 and gT

RB,i ∈ C1×M , i = 1, . . . , N , respectively. More-
over, they are modeled as gAR,i ∼ CN (0, βAR,iIM ) and gRB,i ∼
CN (0, βRB,iIM ). This is known as the classical Rayleigh fading
model, where βAR,i and βRB,i model the large-scale path-loss ef-
fects, which are assumed to be constant over many coherence in-
tervals and known a priori. For notational convenience, the channel
vectors are collected in the matrices GAR = [gAR,1, . . . ,gAR,N ] ∈
CM×N and GRB = [gRB,1, . . . ,gRB,N ] ∈ CM×N .

For the considered multi-pair two-way relaying system, the en-
tire information transmission process consists of two separate phas-
es. In the first phase, TA,i and TB,i simultaneously transmit their
respective signals to TR, for i = 1, . . . , N . Thus, the received sig-
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nal at the TR is given by

yr =
√
pu

N∑
i=1

(gAR,ixA,i + gRB,ixB,i) + nR, (1)

where xA,i and xB,i are independent Gaussian signals distributed as
CN (0, 1) transmitted by the i-th user pair, pu is the average transmit
power of each user, and nR ∼ CN (0, IM ) is a vector of additive
white Gaussian noise (AWGN) at the relay. Note that pu has the
interpretation of normalized ”transmit“ SNR and is therefore dimen-
sionless.

In the second phase, TR broadcasts yr to all the users, after
multiplying the received signal yr with the precoding matrix F.
Thus, the transmit signal from TR is given by yt = ρFyr , where
F ∈ CM×M is a linear processing matrix (which is a function of
the channel estimates), and ρ is a normalization coefficient, which
is chosen to satisfy the long-term transmit power constraint at the
relay, namely, E

{
||yt||2

}
= pr . Finally, TA,i and TB,i receive

zA,i = gT
AR,iyt + nA,i , zB,i = gT

RB,iyt + nB,i, (2)

respectively, where nA,i ∼ CN (0, 1) and nB,i ∼ CN (0, 1) repre-
sent the AWGN at TA,i and TB,i, respectively.

2.1. Channel Estimation

In practice, the random realizations of the channel matrices GAR

and GRB are not known and need to be estimated at the relay. We
assume that the relay forwards the channel estimates to the users
through the feedback channel without error. The typical way of esti-
mating channels is to utilize pilots [8]. To this end, τp ≥ 2N sym-
bols of each coherence interval τc (in symbols) are used for channel
training. Moreover, the transmit power of each pilot symbol is pp.
As in [7, 9, 10], we assume TR uses the minimum mean-square-error
(MMSE) estimation method to estimate GAR and GRB . As a result,
GAR and GRB can be decomposed as

GAR = ĜAR +EAR , GRB = ĜRB +ERB , (3)

respectively, where EAR and ERB are the estimation error matrices
of GAR and GRB . Due to the orthogonality property of MMSE
estimators and the fact that ĜAR, EAR, ĜRB , and ERB are Gaus-
sian distributed, these matrices are independent of each other. By
rewriting (3) in vector form, we have

gAR,i = ĝAR,i + eAR,i , gRB,i = ĝRB,i + eRB,i, (4)

where ĝAR,i, eAR,i, ĝRB,i, and eRB,i are the i-th columns of ĜAR,
EAR, ĜRB , and ERB , respectively, which are mutually indepen-
dent. Moreover, the elements of ĝAR,i, eAR,i, ĝRB,i, and eRB,i are
Gaussian random variables with zero mean, variance σ2

AR,i, σ̃
2
AR,i,

σ2
RB,i and σ̃2

RB,i, where σ2
AR,i ,

τpppβ
2
AR,i

1+τpppβAR,i
, σ̃2

AR,i ,
βAR,i

1+τpppβAR,i
,

σ2
RB,i ,

τpppβ
2
RB,i

1+τpppβRB,i
, and σ̃2

RB,i ,
βRB,i

1+τpppβRB,i
[7].

2.2. Linear Processing

The relay station TR treats the channel estimates as the true channels
and utilizes them to perform linear processing. We consider the sim-
ple MR processing method to avoid computational delays and bur-
den, hence the beamforming matrix F ∈ CM×M is obtained as [4]
F = B∗AH , where A =

[
ĜAR, ĜRB

]
, B =

[
ĜRB , ĜAR

]
.

Then, we have ρ =
√

pr
puE{||FC||2}+E{||F||2} , where C = [GAR,GRB ].

3. SPECTRAL EFFICIENCY

In this section, we investigate the spectral efficiency (in bit/s/Hz) of
the two-way AF relaying system. Without loss of generality, we only
present the analytical results for TA,i, since the results for TB,i can
be obtained by interchanging A and B in all the expressions.

When TA,i receives the superimposed signal from TR, it at-
tempts to subtract its own transmitted message (self-interference)
from the observations with the help of estimated channels and ρ.
However, the self-interference term cannot be completely removed
from the received signals due to imperfect CSI [11, 12], which result-
s in residual self-interference. Therefore, after partially cancelling
self-interference, namely, ρ

√
puĝ

T
AR,iFĝAR,ixA,i, the received sig-

nal at TA,i can be expressed as

ẑA,i = ρ
√
puĝ

T
AR,iFĝRB,ixB,i︸ ︷︷ ︸
desired signal

(5)

+ ρ
√
pu

(
ĝT
AR,iFeRB,i + eT

AR,iFĝRB,i + eT
AR,iFeRB,i

)
xB,i︸ ︷︷ ︸

estimation error

+ ρ
√
pu

(
ĝT
AR,iFeAR,i + eT

AR,iFĝAR,i + eT
AR,iFeAR,i

)
xA,i︸ ︷︷ ︸

residual self-interference

+ ρ
√
pu

N∑
j=1,j ̸=i

(
gT
AR,iFgAR,jxA,j + gT

AR,iFgRB,jxB,j

)
︸ ︷︷ ︸

inter-user interference

+ ρgT
AR,iFnR + nA,i︸ ︷︷ ︸

compound noise

.

Using a standard approach based on the worst-case uncorrelated ad-
ditive noise [13–15], a lower bound on the ergodic achievable spec-
tral efficiency for TA,i yields

RA,i =
1

2
E

log2

1 +
Ai

E
{
(Bi + Ci +Di + Ei) |ĜAR, ĜRB

}
 ,

where the inner and outer expectations are taken over the estimation
errors and channel estimates, respectively, and

Ai , |ĝT
AR,iFĝRB,i|2, (6)

Bi , |ĝT
AR,iFeRB,i|2 + |eT

AR,iFĝRB,i|2 + |eT
AR,iFeRB,i|2,

Ci , |ĝT
AR,iFeAR,i|2 + |eT

AR,iFĝAR,i|2 + |eT
AR,iFeAR,i|2,

Di ,
N∑

j=1,j ̸=i

(
|gT

AR,iFgAR,j |2 + |gT
AR,iFgRB,j |2

)
,

Ei , ||gT
AR,iF||2/pu + 1/

(
ρ2pu

)
.

Thus, the ergodic sum spectral efficiency of the multi-pair two-way

AF relaying system is given by R =
τc−τp

τc

N∑
i=1

(RA,i +RB,i),

where RB,i is the spectral efficiency for TB,i, which can be derived
in a similar fashion due to symmetry.

As the achievable spectral efficiency RA,i is difficult to obtain
in closed-form for finite system dimensions, we consider the large-
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antenna regime and compute an approximate expression that is tight
as M → ∞, based on random matrix theory [16]. In what follows,
we will derive a large-system approximation R̃A,i of RA,i.

Theorem 1 As the number of relay antennas grows infinitely large,
then RA,i − R̃A,i

M→∞−→ 0 almost surely, where R̃A,i is given by1

R̃A,i =
1

2
log2

(
1 +

M

B̃i + C̃i + D̃i + Ẽi

)
, (7)

where B̃i ,
σ̃2
RB,i

σ2
RB,i

+
σ̃2
AR,i

σ2
AR,i

, C̃i ,
2σ̃2

AR,i

σ2
RB,i

, D̃i ,
N∑
j ̸=i

(D1 +D2 +D3)

with D1 , σ2
RB,jσ

4
AR,j+σ2

AR,jσ
4
RB,j

σ2
AR,i

σ4
RB,i

, D2 , σ2
AR,j+σ̃2

AR,j+σ2
RB,j+σ̃2

RB,j

σ2
RB,i

,

and D3 , σ̃2
AR,iσ

2
AR,jσ

2
RB,j(σ

2
AR,j+σ2

RB,j)
σ4
AR,i

σ4
RB,i

, and Ẽi , 1
puσ2

RB,i
+

1
prσ

4
AR,i

σ4
RB,i

N∑
n=1

(
σ2
AR,nσ

2
RB,n

(
σ2
AR,n + σ2

RB,n

))
.

Theorem 1 suggests that R̃A,i is an increasing function with re-
spect to M , indicating that the full array gain of M can be achieved
also in two-way relaying. Also, focusing on the term D̃i, it can be
seen that, the individual user spectral efficiency R̃A,i decreases with
the number of user pairs N ; this is anticipated since increasing the
number of users generates more inter-user interference.

4. POWER SCALING LAWS

In this section, we study the potential for power saving to maintain a
desired spectral efficiency level.

Theorem 2 When pu = Eu
Mα , pr = Er

Mβ , and pp =
Ep

Mγ , with
α ≥ 0, β ≥ 0 (but α and β cannot be equal to zero at the same
time), and γ > 0, as well as fixed Eu, Er , and Ep, we have

R̃A,i −
1

2
log2

(
1 +

1

Qi

)
M→∞−→ 0, (8)

where Qi , Mα+γ−1

τpEpEuβ2
RB,i

+ Mβ+γ−1

τpEpErβ
4
AR,i

β4
RB,i

N∑
n=1

(
β2
AR,nβ

2
RB,n

(
β2
AR,n + β2

RB,n

))
.

Theorem 2 provides a very encouraging result: as long as α +
γ = 1 and β + γ = 1, a non-zero R̃A,i can be achieved even if the
transmit powers of each user, of each pilot symbol, and of the relay
are simultaneously cut down inversely proportional to Mα, Mβ , and
Mγ , respectively. However, when α+γ > 1 and/or β+γ > 1, R̃A,i

converges to zero because of poor estimation accuracy or low trans-
mit power of each user/the relay. In contrast, when 0 < α + γ < 1
and 0 < β + γ < 1, R̃A,i grows without bound. It is worth not-
ing that the above results rely on the assumption of ideal hardware.
However, if we consider non-ideal hardware, the situation is quite d-
ifferent, since hardware impairments are fundamentally limiting the
capacity in the many-antenna regime [17].

Corollary 1 When α = β > 0 and α+ γ = 1, namely, pu = Eu
Mα ,

pr = Er

Mβ , and pp =
Ep

Mγ , with γ > 0, as well as fixed Eu, Er , and
Ep, as M → ∞, R̃A,i converges to a non-zero limit.

1Note that the results of Theorem 1 and others are provided with no proof
due to space constraints.

Corollary 1 reveals a fundamental trade-off between the trans-
mit powers of each user and of each pilot symbol; in particular, to
achieve the same spectral efficiency, one can either use lower trans-
mit power for each user and higher transmit power for each pilot
symbol, or vice versa.

Corollary 2 When α > β ≥ 0 and α+ γ = 1, namely, pu = Eu
Mα ,

pr = Er

Mβ , and pp =
Ep

Mγ , with γ > 0, as well as fixed Eu, Er , and
Ep, R̃A,i converges to

R̃A,i
M→∞−→ 1

2
log2

(
1 + τpEpEuβ

2
RB,i

)
. (9)

Corollary 2 shows that R̃A,i is asymptotically independent of
the number of user pairs N , which indicates that the sum spectral
efficiency is a linear function with respect to N . In other words, a
large number of user pairs will significantly boost the sum spectral
efficiency in this regime of small pu.

Corollary 3 When 0 ≤ α < β and β + γ = 1, namely, pu = Eu
Mα ,

pr = Er

Mβ , and pp =
Ep

Mγ , with γ > 0, as well as fixed Eu, Er , and
Ep, R̃A,i converges to

R̃A,i
M→∞−→ 1

2
log2

1 +
τpEpErβ

4
AR,iβ

4
RB,i

N∑
n=1

(
β2
AR,nβ

2
RB,n

(
β2
AR,n + β2

RB,n

))
 .

Corollary 3 provides a trade-off between the transmit powers of
the relay and of each pilot symbol. In addition, as can be observed,
R̃A,i increases with Ep and Er , while decreases with N , which sug-
gests that when the number of user pairs increases, the relay and/or
each pilot symbol should increase their power in order to maintain
the same performance.

5. POWER ALLOCATION

The spectral efficiency can be further enhanced by optimally allo-
cating the transmit powers. We assume that the design of the train-
ing phase is done in advance, i.e., the transmit power of each pilot
symbol pp is fixed. We are interested in designing a power alloca-
tion policy in the data transmission phase that maximizes the sum
spectral efficiency. Let P be the total transmit power in the data
transmission phase, thus we have 2Npu + pr ≤ P . To simplify
the analysis, we assume that the large scale fading is the same for
all links, i.e., βAR,i = βRB,i = 1, leading to σ2

A,i = σ2
B,i = σ2,

σ̃2
A,i = σ̃2

B,i = σ̃2, and R̃A,i = R̃B,i.
The optimization problem can be formulated as

max
pu,pr

τc − τp
τc

N∑
i=1

(
R̃A,i + R̃B,i

)
(10)

s.t. 2Npu + pr ≤ P, pu ≥ 0, pr ≥ 0. (11)

After some algebraic manipulations, the optimal solution can be
obtained as shown in the following theorem:

Theorem 3 The optimal power allocation policy is popt
u = P

4N
, and

popt
r = P

2
.

Proof: For a given pu, R̃A,i is an increasing function of pp, and
for a given pp, R̃A,i is an increasing function of pu. Hence, R̃A,i is
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Fig. 1: Spectral efficiency versus SNR for pp = pu and pr = 2Npu.

maximized when 2Npu + pr = P [18]. Inserting pr = P − 2Npu
and assuming that all the links are the same, the problem reduces to

argmax
pu

log2 (1 + 1/f(pu)) (12)

s.t. 0 ≤ pu ≤ P/2N, (13)

where f(pu) , a + b
pu

+ c
P−2Npu

with a , 4 (N − 1) + 4Nσ̃2

σ2 ,

b , 1
σ2 , and c , 2N

σ2 . Since f ′′(x) = 2b
x3 + 8N2c

(P−2Nx)3
≥ 0, f(pu)

is a convex function in 0 ≤ pu ≤ P . Therefore, solving f ′(x) = 0
yields the desired results. �

Theorem 3 indicates that, for a given power budget 2Npu+pr =
P , half of the total power should be allocated to the relay regardless
of the number of users, and the remaining half is equally allocat-
ed to the 2N users. Such a symmetric power allocation strategy is
rather intuitive due to the symmetric system setup. In addition, it
can be directly inferred that the transmit power of each user decreas-
es monotonically as the number of users increases, which serves as
a useful guideline for practical system design.

6. NUMERICAL RESULTS

For all illustrative examples, we assume that the large scale fading
coefficients are βAR = βRB = 1, and choose the length of the
coherence interval to be τc = 196 (symbols), and the training length
τp = 2N . Furthermore, we define SNR , pu. Also, the transmit
powers Eu, Ep, Er , pp, and pr are normalized to “dB” scale.

Fig. 1 shows the achievable sum spectral efficiency for different
M . The “Approximations” curves are plotted according to (7), and
the “Numerical results” curves are generated via Monte-Carlo sim-
ulations by averaging over 104 independent trials. As can be readily
observed, the large-system approximations are always overestimat-
ing the performance in these simulations, but they are very accurate,
especially for large antenna arrays. Moreover, increasing the number
of relay antennas brings significant spectral efficiency improvement,
as expected.

Fig. 2 illustrates the power scaling laws. First, focusing on the
three curves on the top of the figure, we observe that the sum spec-
tral efficiency converges to non-zero limits, as predicted by Corol-
laries 1–3. Moreover, the gaps between these three curves and the
“Corollaries 2 and 3” curve are small, indicating the tightness of
the approximations given by Corollaries 2–3.2 Second, observing

2Note that the sum spectral efficiency of Corollary 2 and Corollary 3 are
the same since we assume the large scale fading is the same for all links, and
set Eu = 10 dB, Er = 20 dB which results in Er = 2NEu.
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the lower set of curves, we can see that the sum spectral efficiency
gradually reduces to zero in all parameter settings, i.e., α + γ > 1,
β+γ < 1, as well as α+γ > 1, β+γ > 1, confirming the analysis
in Theorem 2. In addition, when we cut down the transmit powers
of each user, of the relay, and of each pilot symbol too much, i.e.,
α = 0.9, β = 0.8, γ = 0.8, the sum spectral efficiency is very low.

Fig. 3 first studies the impact of N on SNR. As can be readi-
ly observed, the optimal transmit power of each user decreases with
the number of user pairs N , as predicted by Theorem 3. To illus-
trate the benefit of power allocation policy, for N = 5, we plot the
achievable spectral efficiency with the optimal user transmit power,
namely pu = 6.99 dB, against two arbitrary choose transmit power
level, pu = 9.9 dB and pu = −10 dB. As can be observed, the op-
timal power allocation policy provides significant spectral efficiency
enhancement, compared to the case without power allocation. In
addition, this improvement is more prominent when the number of
relay antennas becomes larger.

7. CONCLUSION

This paper investigated the performance of a multi-pair two-way AF
relaying system with imperfect CSI. We derived a closed-form large-
system approximation of the achievable spectral efficiency that is
tight as M → ∞, based on which, the power scaling laws were
characterized. The outcome reveals some fundamental trade-offs be-
tween pu/pr and pp. Finally, for a given power budget, the transmit
powers of each user and of the relay were optimized to maximize the
sum spectral efficiency.
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