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ABSTRACT
This paper studies joint source transmit beamforming and

relay amplification matrix design to achieve rate maximiza-

tion for full-duplex (FD) MIMO amplify-and-forward (AF)

relay systems with consideration of relay processing delay

(RPD). The problem is difficult to solve due mainly to the

self-interference constraint induced by the RPD. In this pa-

per, we first propose a penalty-based algorithmic framework,

called P-BSUM, for a class of constrained optimization prob-

lems with difficult equality constraints in addition to some

convex constraints. We then apply the P-BSUM algorithm to

the rate maximization problem and obtain a simple iterative

algorithm. Finally, numerical results illustrate the efficiency

of the proposed algorithm.

Index Terms— Full-duplex relaying, MIMO, joint source-

relay design, penalty method, BSUM.

1. INTRODUCTION

Since the multi-antenna technology can not only greatly im-

prove the spectral efficiency of single antenna full-duplex re-

laying systems but also provide more degree of freedom for

suppressing the self-interference (SI) in the spatial domain

[1, 2], it is natural to combine the MIMO and FD relaying

technologies to achieve higher spectral efficiency, leading to

FD MIMO relaying. Recently, FD MIMO relaying has gained

a lot of research interest, e.g., [1–12].

It is noted that most of the existing works [2–10] on FD

MIMO relaying have assumed zero relay processing delay
(RPD). However, the RPD is strictly positive in practice and

neglecting it would cause severe causality issues in the prac-

tical implementation of relaying protocols (see [2, 13] for

more discussion on the consequences of neglecting the RPD).

Hence, the RPD should be taken into consideration in FD

relay system design. In [11], the authors considered the RPD

in single-stream DF MIMO AF relay systems and proposed

low-omplexity joint precoding/decoding schemes to optimize

the end-to-end performance. In addition, the work [12] stud-

ied the end-to-end performance optimization for two-way FD

relay systems with processing delay, where all three nodes

work in FD mode and only the relay is equipped with multiple

antennas.

In this paper, as in [11], we consider a three-node FD

MIMO AF relay system which consists of a multi-antenna

source, a multi-antenna FD relay, and a multi-antenna desti-

nation. We extend the work [11] to the more general multi-
stream scenario and study joint source-relay design, i.e., joint-

ly design the source transmit beamforming V and relay am-

plification matrix Q, to optimize the end-to-end achievable

rate with the consideration of the RPD. As compared to the

single-stream case in [11], the rate maximization problem in

the multi-stream case is much more challenging due mainly

to the difficult SI constraint QHRRQ = 0, where HRR is

the so-called self-interference channel between the relay out-

put and the relay input. Note that, although the works [11,12]
have also considered the SI constraint, they assumed that the
amplification matrix is of rank one to make the problem more
tractable. This often results in loss of rate performance for

the multi-stream case. Hence, it is necessary to consider al-

gorithmic design to deal with the complicated SI constraint.

To address the rate maximization problem in the multi-

stream case, we first develop a penalty-based two-tier iter-

ative optimization approach, where a penalized problem is

locally solved in the inner tier using block successive upper-

bound maximization/minimization (BSUM) algorithm [16]

while a penalty parameter is adjusted in the outer tier so

that the penalized terms gradually approach to zero. We

name the proposed algorithm as penalty-BSUM (P-BSUM)

algorithm. The P-BSUM algorithm is suitable for a class

of constrained optimization problem with difficult equality

constraints. Then, by introducing a set of auxiliary variables,

we rewrite the rate maximization problem as an equivalent

one that fits into the P-BSUM algorithmic framework, and

accordingly propose a P-BSUM-based iterative algorithm for

the rate maximization problem at hand. The benefits of the P-

BSUM-based joint source-relay design over the joint design

under the assumption of rank one relay amplification matrix

is demonstrated using numerical examples.
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2. SYSTEM MODEL AND PROBLEM
FORMULATION

We consider a three-node full duplex MIMO relay network

where a source wants to send information to a destination

with the aid of a full-duplex relay. It is assumed that the

source and destination are equipped with NS and ND an-

tennas, while the relay is equipped with NT transmit anten-

nas and NR receive antennas to enable full-duplex operation.

Let HSR ∈ C
NR×NS denote the channel between the source

and relay, and HRD ∈ C
ND×NR denote the channel between

the relay and destination. In addition, let HRR ∈ C
NR×NT

represent the residual self-interference (SI) channel after the

SI cancellation scheme is performed at the relay. We as-

sume that all channels are subject to independent Rayleigh

block-fading, i.e., they stay constant during one fading block

but change independently at the beginning of the next fading

block according to Rayleigh distribution.

The processing time is required at the relay to implemen-

t the FD operation. This results in relay processing delay,

which we assume is given by a τ -symbol duration. Typically,

the delay is much shorter than a time slot which consists of

a large number of data symbols. Therefore, its effect on the

achievable rate is negligible [12]. Suppose that linear process-

ing is employed at the source and at the relay to enhance the

system performance. Specifically, the source use beamform-

ing matrix V ∈ C
NS×d to send its signal while the relay uses

the amplification matrix Q (i.e., AF relay protocol) to process

its received signal. Hence, at the time instant n, the received

signal r[n] ∈ C
NR×1 at the relay is

r[n] = HSRVs[n] +HRRxR[n] + nR[n] (1)

where1 s[n] ∼ CN (0, Id) is a vector of d transmit symbol-

s, nR[n] ∼ CN (0, σ2
RI) denotes the complex additive white

Gaussian noise (AWGN), and the term HRRxR[n] represents

the residual SI from the relay output to relay input. And the

transmit signal xR[n] at the relay is

xR[n] = Qr[n− τ ] (2)

Combining (1) with (2), the relay output can be rewritten as

xR[n] = QHSRVs[n− τ ] +QHRRxR[n− τ ]

+QnR[n− τ ]

= QHSRVs[n− τ ] +QHRRQr[n− 2τ ]

+QnR[n− τ ]

(3)

The term QHRRQr[n−2τ ] in (3) is a complicated func-

tion of Q and makes the system design very challenging. To

simplify design, we impose a zero-forcing condition on Q to

null out the residual SI from the relay output to relay input,

i.e.,

QHRRQ = 0 (4)

1CN (0,A) denotes circularly symmetric complex Gaussian distribution

with zero mean and covariance matrix A.

which is referred to as SI constraint. Plugging (4) into (3), we

obtain

xR[n] = QHSRVs[n− τ ] +QnR[n− τ ]. (5)

Consequently, the received signal at the destination is

yD[n] = HRDxR[n] + nD[n]

= HRD (QHSRVs[n−τ ]+QnR[n−τ ]) +nD[n]

(6)

where nD[n] ∼ CN (0, σ2
DI) denotes the complex AWGN.

According to (6), the system rate can be expressed as

R(V,Q)= log det

(
I+HRDQHSRVVHHH

SRQ
HHH

RD×

(
σ2
RHRDQQHHH

RD + σ2
DI

)−1
)
. (7)

The power consumption at the relay is given by

pR(V,Q) = Tr
(
QHSRVVHHH

SRQ
H
)
+ σ2

RTr
(
QQH

)
(8)

and the power consumption at the source is Tr(VVH).
In this paper, we are interested in joint source-relay de-

sign to optimize the system rate subject to the source/relay

power constraints and the SI constraint. Mathematically, the

rate maximization problem can be formulated as

max
V,Q

R(V,Q)

s.t. pR(V,Q) ≤ PR,

QHRRQ = 0,

Tr(VVH) ≤ PS .

(9)

where PS and PR are the allowed maximum transmission

power at the souce and relay, respectively. Problem (9) is

nonconvex and complicated mainly by the SI constraint. This

paper aims to provide a systematic method to tackle the diffi-

culty arising from the SI constraint.

3. PENALTY-BSUM METHOD AND ITS
APPLICATION TO PROBLEM (9)

In this section, we first propose a penalty-based algorithmic

framework for a class of optimization problems which have

difficult equality constraints in addition to some convex in-

equality constraints. Then the proposed optimization frame-

work is used to address problem (9).

3.1. Penalty-BSUM method

Consider the problem

(P ) min
x

f(x)

s.t. h(x) = 0,

x ∈ X
(10)
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Table 1. Algorithm 1: P-BSUM method for problem (13)

0. initialize x0 ∈ X , �0 > 0, and set c >
1, k = 0

1. repeat
2. xk+1 = BSUM(P�k

, f̃�k
,xk)

3. �k+1 = c�k
4. k = k + 1

5. until some termination criterion is met

where f(x) is a scalar continuously differentiable function

and h(x) ∈ R
p×1 is a vector of p continuously differentiable

functions; the feasible set X is the Cartesian product of n
closed convex sets: X � X1×X2× . . .×Xn with Xi ∈ R

mi

and
∑n

i=1 mi = m and accordingly the optimization variable

x ∈ R
m can be decomposed as x = (x1,x2, . . . ,xn) with

xi ∈ Xi i = 1, 2, . . . , n.

When the equality constraints are very difficult to handle,

we can use the penalty method [17] to tackle problem (10),

i.e., solving the penalized problem

(P�) min
x

f�(x) � f(x) +
�

2
‖h(x)‖2

s.t. x ∈ X .
(11)

where � is a scalar penalty parameter that prescribes a high

cost for violation of the constraints. In particular, when � →
∞, solving the above problem yields an approximately opti-

mum solution to problem (10) [17]. However, it is still diffi-

cult to globally solve problem (P�) when f(x) and h(x) are

nonconvex functions. So an interesting question is: can we

reach at least a stationary point of problem (P ) by solving a

sequence of problem (P�) to stationary points? This motivate

us to propose the P-BSUM method.

The penalty-BSUM algorithm is summarized in Table 1,

where BSUM(P�k
, f̃�k

,xk) means that, starting from xk, the

BSUM algorithm [16] is invoked to iteratively solve problem

P�k
with a locally tight lower bound function f̃�k

of f(x).
The penalty-BSUM algorithm is inspired by the penalty de-

composition (PD) method which was proposed in [14,15] for

general rank minimization/sparse approximation problems,

where each penalized subproblem is solved by a block coor-

dinate descent method [17]. Different from the PD method,

the penalized problem (P�) is iteratively solved using the

block successive upper-bound minimization method [16] in

the P-BSUM algorithm. Let PX {x} denote the projection of

x onto the convex set X . The following proposition shows

that any limit point of the sequence generated by the P-

BSUM algorithm satisfies the first-order optimality condition

of problem (P ), hence a stationary point of problem (P ).

Theorem 3.1. Let {xk} be the sequence generated by Algo-
rithm 1 where the termination condition for the BSUM algo-
rithm is

∥∥PX {xk −∇f�k
(xk)} − xk

∥∥ ≤ εk, ∀k with εk →

0 as k → ∞. Suppose that x∗ is a limit point of the se-
quence {xk} and ∇f(x∗) is bounded. In addition, assume
that Robinson condition [15, 18] holds for problem (P ) at
x∗, i.e., {∇h(x∗)dx : dx ∈ TX (x∗)} = R

p where TX (x∗)
denotes the tangent cone of X at x∗. Then x∗ is a stationary
point of problem (P ).

Proof. The details of the proof are omitted due to space lim-

itation. The key to the proof is to show that the sequence of

μk � �kh(xk) is bounded in terms of the termination condi-

tion of the BSUM algorithm with εk → 0 and under Robin-

son’s condition, and thus it has a convergent subsequence

whose limit is a Lagrange multiplier for the equality con-

straints. With the boundedness of μk, we have h(xk) → 0 as

�k → ∞.

3.2. The P-BSUM algorithm for (9)

Now we are ready to address problem (9) by using the P-

BSUM algorithm. To efficiently make use of the BSUM

algorithm, we introduce a set of auxiliary matrix variables

{S, S̃, Ṽ, Q̃,R}. Define Y � {Q,V,S, S̃, Ṽ, Q̃,R}. Then

we can rewrite problem (9) equivalently as

max
Y

log det

(
I+HRDSSHHH

RD×

(
σ2
RHRDQQHHH

RD + σ2
DI

)−1
)

s.t. Tr
(
S̃S̃H

)
+Tr

(
Q̃Q̃H

)
≤ PR,

Tr(VVH) ≤ PS ,

QHSRṼ = S̃,RHQ = 0,RH = QHRR,

S = S̃, σRQ = Q̃,V = Ṽ

(12)

Problem (12) falls into the class of problem (P). Thus, it

can be addressed using the PBSUM algorithm. Specifically,

by penalizing all the equality constraints of the above prob-

lem, we get a penalized version of problem (12) as follows

max
Y

log det

(
I+HRDSSHHH

RD×

(
σ2
RHRDQQHHH

RD + σ2
DI

)−1
)

− �

(
‖σRQ− Q̃‖2 + ‖S− S̃‖2 + ‖V − Ṽ‖2

+ ‖RHQ‖2 + ‖RH −QHRR‖2 + ‖QHSRṼ − S̃‖2
)

s.t. Tr
(
S̃S̃H

)
+Tr

(
Q̃Q̃H

)
≤ PR

Tr(VVH) ≤ PS

(13)
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where � is a scalar penalty parameter.

From Table 1, it is known that, the key step of the PBSUM

algorithm for problem (9) is to apply the BSUM algorithm to

(13). In the following, we show how to address problem (13)

using the BSUM algorithm. The basic idea behind the BSUM

algorithm for a maximization (resp., minimization) problem

is to successively maximize a locally tight lower (resp., upper)

bound of the objective, finally reaching a stationary point of

the problem [16]. Hence, the key to the BSUM algorithm

applied to (13) is to find a locally tight lower bound for the

objective of problem (13). For ease of exposition, we define

R̃(S,Q) � log det

(
I+HRDSSHHH

RD×

(
σ2
RHRDQQHHH

RD + σ2
DI

)−1
)
, (14)

E(U,S,Q) �
(
I−UHHRDS

) (
I−UHHRDS

)H
+ σ2

RU
HHRDQQHHH

RDU+ σ2
DUHU. (15)

Then, by applying the popular WMMSE algorithmic frame-

work [19], we can obtain a locally tight lower bound of

R(S,Q) as follows

R̃(S,Q) = max
W,U

log det(W)− Tr(WE(U,S,Q)) + d

≥ log det(W̄)− Tr(W̄E(Ū,S,Q)) + d, ∀Q,S, Q̄, S̄.

where

Ū =

(
σ2
RHRDQ̄Q̄HHH

RD + σ2
DI

)−1

HRDS̄, (16)

W̄ = (I− ŪHHRDS̄)−1. (17)

Using the above result, we can obtain a locally tight lower

bound for the objective of problem (13), i.e.,

log det(W̄)− E�(Y) + d

where

Eρ(Y) � Tr(W̄E(Ū,S,Q))

+ �

(
‖σRQ− Q̃‖2 + ‖S− S̃‖2 + ‖V − Ṽ‖2 (18)

+ ‖RHQ‖2 + ‖RH −QHRR‖2 + ‖QHSRṼ − S̃‖2
)
.

The BSUM algorithm successively maximizes this lower

bound with respect to one block of variables while fixing the

others, equivalently, solve the following problem in a block

coordinate descent fashion

min
Y

E�(Y)

s.t. Tr
(
S̃S̃H

)
+Tr

(
Q̃Q̃H

)
≤ PR,

Tr(VVH) ≤ PS ,

(19)

leading to a set of subproblems which allows closed-form so-

lutions.The details are omitted due to space limitation.

4. NUMERICAL EXAMPLES

We present numerical results to illustrate the rate performance

of the proposed joint source-relay optimization algorithms. In

our numerical examples, it is assumed that there are NSD an-

tennas at both the source and destination, i.e., NS = ND =
NSD, and NTR transmit/receive antennas at the relay, i.e.,

NT = NR = NTR. Unless otherwise specified, we set

NSD = NTR = d = 5, σ2
R = σ2

D = 1, and PS = PR = P .

Moreover, we set c = 2 and �0 = 0.01 for the P-BSUM algo-

rithm. We assume that the source-relay and relay-destination

channels experience independent Rayleigh flat fading. Fur-

thermore, each element of the residual SI channel HRR is

modeled as a complex Gaussian distributed random variable

with zero mean and variance −20 dB. The simulation results

are averaged over 100 independent channel realizations.

Figure 1 illustrates the average system rate versus the S-

NR which is defined as 10 log10(P ). For comparison, we also

provide the rate performance of the joint design approach un-

der the assumption of rank one amplification matrix [11]. It

is observed that the P-BSUM-based joint source-relay design

approach could be significantly better than the joint source-

relay design approach under the rank one assumption (denot-

ed as ’Rank-1 method’ in the plot) in the high SNR region.
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Fig. 1. The average system rate versus the SNR.

5. CONCLUSION
This paper have considered joint source-relay design for rate

maximization in FD MIMO AF relay systems with consider-

ation of relay processing delay. A simple algorithmic frame-

work P-BSUM has been proposed to address the difficulty

arising from the self-interference constraint. We remark that

the P-BSUM algorithm can be used to deal with problems

with difficult coupling constraints.
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