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ABSTRACT
Consider a full-duplex two-way relay network, where two legiti-
mate nodes simultaneously transmit and receive confidential infor-
mation through a full-duplex multiantenna relay, in the presence of
an eavesdropper. To secure the communications, an artificial-noise
(AN)-aided amplify-and-forward (AF) strategy is employed at the
relay, with a goal of maximizing the sum secrecy rate of the two-
way transmissions. This sum secrecy rate maximization (SSRM)
problem is nonconvex by nature, but can be converted into the form
of the difference-of-concave (DC) functions after the semidefinite
relaxation (SDR). Thus, the classical DC programming naturally ap-
plies. We prove that the SDR is tight and give a specific way to
recover a stationary solution of the SSRM problem from the relaxed
DC problem. Moreover, to reduce the iteration complexity of DC,
we proposed an inexact DC framework, which uses an approximate
solution to iterate, rather than a globally optimal one. The conver-
gence of the inexact DC to a stationary solution of the SSRM prob-
lem is also established.

Index Terms— physical-layer security, full-duplex relay, DC
program, semidefinite relaxation

1. INTRODUCTION
With the recent advances of self-interference cancelation (SIC) tech-
niques [1], full-duplex (FD) communications have gained renewed
interest, owing to its potential to double the spectral efficiency by
simultaneously transmitting and receiving (STR) over the same fre-
quency bands. Besides the spectral efficiency improvement, this
new STR feature also provides new opportunities for system designs
to achieve some specific goals, such as physical-layer (PHY) secu-
rity. PHY security is a means of securing communications at the
PHYwithout bothering the high-layer encryption and decryption. To
achieve PHY security, it is usually required that the legitimate user
should have better reception quality than the eavesdropper. An effec-
tive way to achieve this is to intentionally send artificial noise (AN)
to jam the eavesdropper’s reception. This transmitter-side jamming
strategy has been widely studied in the PHY literature; see [2–4]
and the references therein. More recently, the work [5] proposed an
alternative receiver-side jamming strategy, where an FD receiver re-
ceives confidential information from the transmitter, and meanwhile
sends AN to jam the eavesdropper. The study of using full duplex
to enhance PHY security has thus triggered several works under var-
ious scenarios, including the point-to-point FD secure communica-
tions [5, 6], the FD secure relay networks [7–9], and the FD cellular
secure communications [10].

This work was supported in part by the National Natural Science Foun-
dation of China under Grants 61401073 and 61531009, and in part by the Ap-
plied Basic Research Programs of Sichuan Province, China (2015JY0102).

In this work, we consider an FD two-way relay network, where
two FD legitimate radios exchange confidential information through
an FD relay, in the presence of an eavesdropper. Unlike the pre-
vious works on FD two/multi-hop relay network [7–9], where the
relay works in either FD relaying mode or FD jamming mode, we
consider a more general relaying strategy—simultaneously relaying
information and sending AN. Specifically, we assume that the FD
relay receives confidential information from the two legitimate ra-
dios, and meanwhile amplify-and-forwards (AF) the received infor-
mation to them, with the AN being superimposed in the AF signal
to jam the eavesdropper. Our goal is to design the AF matrix and
the AN covariance at the relay such that the sum secrecy rate of the
two-way transmissions is maximized. This sum secrecy rate maxi-
mization (SSRM) problem is nonconvex by nature, but can be con-
verted into a form of the difference-of-concave (DC) functions after
the semidefinite relaxation (SDR). Hence, the classical DC program-
ming approach naturally applies.

Our main contributions are as follows: 1) We prove that the SDR
is tight, and provide a specific way to recover a stationary solution
for the SSRM problem from every limit point of the DC iterations;
2) To reduce the iteration complexity of DC, we also proposed an
inexact DC framework, which proceeds with an approximate solu-
tion, rather than a globally optimal one, throughout the DC itera-
tions; convergence of the inexact DC is also established.

2. SYSTEMMODEL AND PROBLEM FORMULATION
Consider a full-duplex two-way relay network, where Alice and Bob
simultaneously transmit and receive confidential information from
each other through a relay, in the presence of an eavesdropper (Eve).
Specifically, we focus on the following scenario: 1) Alice, Bob and
relay are full-duplex and relay works in AF mode; 2) Alice and
Bob both have two antennas—one for transmission and the other
for reception; relay has N transmit antennas and M receive an-
tennas with N �= M ; and Eve has a single antenna; 3) no di-
rect link exists among Alice, Bob and Eve.1 Let hi,R ∈ C

M and
hR,i ∈ C

N , i ∈ {A,B,E} be the channels from node i to the relay
and the relay to node i, respectively. LetHRR ∈ C

M×N , hAA ∈ C

and hBB ∈ C be the self interference channel at the relay, Alice
and Bob, respectively. Then, the received signal at the relay can be
expressed as

yR(t) = hARxA(t) + hBRxB(t) +HRRxR(t) +nR(t),

where xA(t), xB(t) ∈ C are coded confidential information sent by
Alice and Bob with E{|xA(t)|

2} = pA and E{|xB(t)|2} = pB ,
respectively; nR(t) ∼ CN (0, σ2

RI) is the additive white Gaussian

1The last assumption is made for simplifying the subsequent derivation;
the inclusion of direct links can be handled in a similar manner.
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noise at the relay; xR(t) ∈ C
N is the transmit signal (a.k.a. full-

duplex self interference) at the relay, which takes the following form:

xR(t) = WyR(t− τ ) + z(t).

Herein, τ > 0 is the processing delay at the relay,W ∈ C
N×M is

the AF matrix employed at the relay and z(t) is the artificial noise
(AN) used for interfering Eve. We assume z(t) ∼ CN (0,Q) with
Q � 0.

Accordingly, the received signal at Alice is given by
yA(t) = h

H
RAxR(t) + hAAxA(t) + nA(t)

= h
H
RAWhBRxB(t− τ ) + v(t), (1)

where v(t) = hH
RAWhARxA(t − τ ) + hH

RAWHRR(WyR(t −
2τ )+z(t−τ ))+hAAxA(t)+hH

RAz(t)+hH
RAWnR(t−τ )+nA(t).

The first term of v(t) is the self interference (SI) induced by two-way
communications, which can be eliminated by Alice herself with a
prior knowledge of xA(t− τ ). The second term is the SI induced by
full-duplex operation at the relay, which can be canceled at the relay
by using zero-forcing (ZF) beamforming; we will detail this shortly
in the problem formulation. The third term is the SI induced by full-
duplex operation at Alice, which in practice can be suppressed to
some extent, but not completely removed, owing to the proximity of
the transmit and receive antennas and the insufficient spatial degree
of freedom [1]. Therefore, after SI cancelation, the received signal
signal at Alice reads

ŷA(t) =h
H
RAxR(t) +

√
ζAhAAxA(t) + h

H
RAz(t)

+ h
H
RAWnR(t− τ ) + nA(t),

where 0 < ζA < 1 represents the full-duplex SI suppression factor,
and the achievable rate at Alice is given by

RA = log(1+
|hH

RAWhBR|
2pB

ζA|hAA|2pA + σ2
R‖h

H
RAW ‖2 + hH

RAQhRA + σ2
A

).

Similarly, the achievable rate at Bob can be deduced as

RB = log(1+
|hH

RBWhAR|
2pA

ζB|hBB |2pB + σ2
R‖h

H
RBW ‖2 + hH

RBQhRB + σ2
B

),

and the achievable sum rate at Eve can be upper bounded as

RE = log(1 +
|hH

REWhAR|
2pA + |hH

REWhBR|
2pB

σ2
R‖h

H
REW ‖2 + hH

REQhRE + σ2
E

)

by using the two-user (i.e., Alice and Bob) MAC capacity result [11].
In addition, the transmit power at the relay can be shown to be

p(W ,Q) = pA‖WhAR‖
2+pB‖WhBR‖

2+σ
2
R‖W ‖2F +Tr(Q).

With the above system model, our problem of interest is to de-
sign the AF matrixW and the AN covariance Q such that the sum
secrecy rate of the two-way communications is as large as possible.
Mathematically, the sum secrecy rate maximization (SSRM) prob-
lem may be formulated as2

max
Q�0, W

Rs � RA +RB −RE (2a)

s.t. p(W ,Q) ≤ PR, (2b)
(W ,Q) ∈ F , (2c)

2The sum secrecy rate Rs in (2a) implicitly assumes that Alice and Bob
can coordinately allocate their transmission rates. This coordination may
be possible under some situations, e.g., in cellular network with Alice, Bob
and Eve being mobile users and relay being the base station. If there is no
coordination between Alice and Bob, one may alternatively consider a more
conservative sum secrecy rate R̃s = (RA −RE) + (RB −RE) = RA +

AB − 2RE . Since R̃s differs Rs only in a constant, we will focus on Rs

throughout this paper.

where (2b) is the total power constraint at the relay with the power
threshold PR > 0, and (2c) is the ZF constraint imposed to cancel
the full-duplex SI at the relay [cf. the discussion after Eq. (1)]. In
particular, depending on the relationship betweenM and N , F may
take the following two forms:
1. M > N : F � {(W ,Q) | WHRR = 0},

2. M < N : F � {(W ,Q) | HRRW = 0, HRRQ = 0}.
In the following, we will focus on the case of M > N . The other
case can be handled in a similar manner.

3. A DC APPROACH TO THE SSRM PROBLEM
The SSRM problem (2) is a nonconvex optimization problem, but
can be converted into a form a difference-of-concave functions. To
see this, let us first rewrite problem (2) into an alternative form.

Claim 1 Let r = rank(HRR) and U0 ∈ C
M×(M−r) be the left

singular vectors associated with the zero singular values of HRR.
Then, problem (2) can be equivalently written as:

max
Q�0, w

f(ww
H
,Q)− g(ww

H
,Q) (3a)

s.t. Tr(ww
H) + Tr(Q) ≤ PR, (3b)

where W = vec−1(F−1/2w)UH
0 with vec−1(·) being the in-

verse operation of vectorization, F = pA(U
T
0 h∗

AR⊗I)(UT
0 h∗

AR⊗
I)H +pB(U

T
0 h∗

BR⊗I)(UT
0 h∗

BR⊗I)H +σ2
RI , f(wwH ,Q) and

g(wwH ,Q) are defined as follows:

f(ww
H
,Q) �

∑3
i=1 log

(
ci + αi(wwH ,Q)

)
,

g(ww
H
,Q) �

∑3
i=1 log

(
ci + βi(wwH ,Q)

)
,

where c1 = ζA|hAA|
2pA+σ2

A, c2 = ζB|hBB |2pB+σ2
B , c3 = σ2

E ,
αi and βi are defined on the top of the next page. Claim 1 can be
deduced straightforwardly by some matrix manipulations; the detail
of the proof is omitted due to the page limit.

Our next step is to apply the semidefinite relaxation (SDR) tech-
nique to fit problem (3) into the DC framework. Specifically, by
letting W = wwH and dropping the rank-one constraint on W ,
we obtain the SDR of (3) as follows:

max
W�0,Q�0

φ(W,Q) � f(W ,Q)− g(W,Q) (4a)

s.t. Tr(W) + Tr(Q) ≤ PR. (4b)

Since f(W ,Q) and g(W,Q) are both concave w.r.t. (W,Q),
problem (4) falls into the context of DC program. A standard way
to handle problem (4) is to locally linearize the nonconcave function
−g(W,Q) at some feasible point (Wk,Qk) and iteratively solve
the linearized problem, i.e.,

(Wk+1
,Q

k+1) ∈ max
W�0,Q�0

φ̃(W,Q;Wk
,Q

k) (5a)

s.t. Tr(W) + Tr(Q) ≤ PR, (5b)

where φ̃(W,Q;Wk,Qk) � f(W ,Q)− g̃(W,Q;Wk,Qk) and
g̃(W,Q;Wk,Qk) � Tr

(
∇Wg(Wk,Qk)H(W −W

k)
)
+

Tr
(
∇Qg(Wk,Qk)H(Q−Qk)

)
+ g(Wk,Qk). Problem (5) is a

convex problem, which can be optimally solved, e.g., by CVX [12].
Moreover, by directly applying the DC convergence result [13], we
immediately have the following conclusion: Every limit point of
{(Wk,Qk)}k is a stationary point of problem (4).
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α1(ww
H
,Q) =β1(ww

H
,Q) + pB(UT

0 h
∗
BR ⊗ hRA)

H
F

−1/2
ww

H
F

−1/2(UT
0 h

∗
BR ⊗ hRA),

α2(ww
H
,Q) =β2(ww

H
,Q) + pA(U

T
0 h

∗
AR ⊗ hRB)HF

−1/2
ww

H
F

−1/2(UT
0 h

∗
AR ⊗ hRB),

α3(ww
H
,Q) =h

H
REQhRE + Tr(σ2

R(I ⊗ hRE)HF
−1/2

ww
H
F

−1/2(I ⊗ hRE)),

β1(ww
H
,Q) =Tr(σ2

R(I ⊗ hRA)
H
F

−1/2
ww

H
F

−1/2(I ⊗ hRA)) + h
H
RAQhRA,

β2(ww
H
,Q) =Tr(σ2

R(I ⊗ hRB)HF
−1/2

ww
H
F

−1/2(I ⊗ hRB)) + h
H
RBQhRB ,

β3(ww
H
,Q) =α3(ww

H
,Q) + pA(U

T
0 h

∗
AR ⊗ hRE)

H
F

−1/2
ww

H
F

−1/2(UT
0 h

∗
AR ⊗ hRE) + . . .

pB(U
T
0 h

∗
BR ⊗ hRE)

H
F

−1/2
ww

H
F

−1/2(UT
0 h

∗
BR ⊗ hRE).

Thus far, we have shown how to handle the relaxed SSRM prob-
lem (4) by DC program. Now, let us turn our attention back to the
original SSRM problem (3). In particular, let (W̄ , Q̄) be a limit
point of {(Wk,Qk)}k . Then, the following question arises natu-
rally: Can we construct a stationary solution of problem (3) from
(W̄, Q̄)? If yes, how to do it?

To answer the above question, let us consider the following prob-
lem:

max
W�0,Q�0

Tr
(
(∇Wf(W̄ , Q̄)HW) + (∇Qf(W̄, Q̄)HQ)

)

s.t. βi(W,Q) = βi(W̄, Q̄), i = 1, 2, 3,

Tr(W) + Tr(Q) = Tr(W̄) + Tr(Q̄).

(6)

Problem (6) is closely related to problems (3) and (4). In particular,

Theorem 1 Suppose that (Ŵ , Q̂) is any optimal solution of prob-
lem (6) and Q̂ �= 0. Then, there exists a rank-one optimal solution
Ŵ = ŵŵH for problem (6). Moreover, (ŵ, Q̂) is a stationary
solution or Karush-Kuhn-Tucker (KKT) solution of problem (3).

The proof of Theorem 1 relies on the rank reduction result in [14]
as well as some judiciously constructed problems that help link the
KKT conditions of problems (3), (4) and (6). The detailed proof is
omitted due to the page limit.

4. AN INEXACT DC APPROACH TO SSRM PROBLEM

As one may note that each DC iteration in (5) requires solving a
convex optimization problem to globally optimality, which could be
time consuming in practice. To save the computational load, we con-
sider an inexact DC update by finding an approximate solution for
problem (5), rather than a globally optimal one. Before delving into
the detail of the inexact DC, let us first introduce the notion of gra-
dient mapping [15], which is useful for characterizing the solution
inexactness as well as stationarity. Consider maximizing a contin-
uously differentiable function ϕ(x) over a convex compact feasible
set C. The gradient mapping of ϕ(x) at x̄ ∈ C is denoted as

∇̃ϕ(x̄) � P (x̄+∇ϕ(x̄))− x̄, (7)

where P(x) represents the projection of a point x onto the set C. It
is well known that a point x̄ ∈ C is a stationary point if and only if
∇̃ϕ(x̄) = 0 [16]. Now, let us turn back to the DC subproblem (5),
which is restated below:

max
x

φ̃(x;xk) s.t. x ∈ D, (8)

where for notational convenience, we have denoted x � (W ,Q)

and D � {(W,Q) | Tr(W + Q) ≤ PR, W � 0, Q � 0}.
Instead of solving problem (8) to global optimality, we do the fol-
lowing inexact DC update:

Find an (approximate) solution xk+1 ∈ D for problem (8) such
that the following relationship holds:

φ̃(xk+1;xk)− φ̃(xk;xk) ≥ ζ
k‖∇̃φ̃(xk;xk)‖2, (9)

where ζk > 0, ∀k is some iteration-dependent constant and
bounded away from zero.

The inexact DC updating rule (9) is quite flexible. It is easy to see
that the previous exact DC update fulfills (9). Moreover, without
computing a globally optimal solution for (5), the inexact DC may
iterate in a more computationally efficient manner; we will detail this
in the next subsection. Despite that somehow low-quality or approx-
imate solutions are sought at each inexact DC iteration, interestingly
the same convergence as the exact DC is still guaranteed, as revealed
by the following proposition.

Proposition 1 Suppose that {xk} is a sequence generated by the
inexact DC, fulfilling the relationship (9). Then, every limit point of
{xk} is a stationary point of problem (4).

The key to the proof of Proposition 1 is that the updating rule (9)
ensures that there is a sufficient improvement between the consecu-
tive iterations if the current point is nonstationary. By accumulating
these improvements, the DC iteration will finally reside at some sta-
tionary point. Due to the page limit, we omit the detailed proof. In
light of Proposition 1, a similar result as Theorem 1 can be readily
established.

Theorem 2 Let x̄ = (W̄, Q̄) be a limit point generated by the
inexact DC with each iteration fulfilling (9). Suppose that (Ŵ , Q̂)

is any optimal solution of problem (6) and Q̂ �= 0. Then, there exists
a rank-one solution Ŵ = ŵŵH for problem (6). Moreover, (ŵ, Q̂)
is a stationary solution or KKT solution of problem (3).

While the inequality (9) poses a general sufficient condition for
achieving a stationary solution of problem (3), it is still not clear how
to algorithmically generate such an iteration sequence, especially in
a computationally efficient manner. In the next subsection, we will
give a simple implementation of the inexact DC by leveraging first-
order optimization methods.
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4.1. A Projected Gradient-based Inexact DC Implementation

We consider generating the inexact solution xk+1 for (8) by pro-
jected gradient method (PGM), where only a small finite number of
PG operations are performed to produce xk+1 fromxk. Algorithm 1
summarizes the inexact PGM for problem (8).

Algorithm 1 An Inexact PGM for Problem (8)

1: Set l = 0, xk,0 = xk and the number of PG operations Lk ≥ 1
2: while l ≤ Lk − 1 do
3: Set xk,l+1 = xk,l + αk,l∇̃φ̃(xk,l;xk), where αk,l > 0
is the stepsize determined by either Armijo’s rule or (limited)
minimization rule [16].

4: l = l + 1;
5: end while
6: xk+1 = xk,Lk .

Remark 1 When Lk = 1 for all k, one can verify that Algorithm 1
degenerates into directly applying PGM to the original DC prob-
lem (4). However, for Lk > 1, Algorithm 1 has an incentive to
making more progress at each DC subproblem by performing Lk

PG operations. One extreme case is to let Lk approach infinity for
all k. Then, Algorithm 1 becomes the exact DC and converges to
a stationary solution of problem (3) by Theorem 1. For finite Lk,
the following proposition reveals that the same convergence is still
guaranteed.

Proposition 2 Suppose that {xk} is a sequence generated by Al-
gorithm 1. Then, every limit point of {xk} is a stationary point of
problem (4). Moreover, by using the same construction as that in
Theorem 1, a stationary solution of problem (3) can be constructed
from every limit point of {xk}.

The key to the proof is to show that each iteration of Algorithm 1 ful-
fills the inequality (9). Thus, the result follows directly from Propo-
sition 1 and Theorem 2. The detailed proof is omitted due to the
page limit.

Thus far, we have established the convergence of Algorithm 1.
The remaining issue is whether Algorithm 1 can be efficiently im-
plemented. Clearly, the main computation lies in performing the PG
operations, particularly, the computation of ∇̃φ̃(xk,l;xk) (cf. line 3
of Algorithm 1). From the definition of the gradient mapping, one
needs to find an efficient way to calculate P(xk,l +∇φ̃(xk,l;xk)),
i.e., solving the following projection problem:

min
W,Q

∥∥∥∥
(

W

Q

)
−

(
W

k,l +∇W φ̃(xk,l;xk)

Qk,l +∇Qφ̃(xk,l;xk)

)∥∥∥∥
2

s.t. Tr(W +Q) ≤ PR, W � 0, Q � 0.

(10)

Problem (10) admits a water-filling-like solution. Specifically, the
optimal solution of (10) is given by [17, Fact 1]

W
� = F1Diag(η�

1)F
H
1 , Q

� = F2Diag(η�
2)F

H
2 ,

where F1Diag(η̃1)F
H
1 and F2Diag(η̃2)F

H
2 are the eigenvalue de-

compositions ofWk,l+∇W φ̃(xk,l;xk) andQk,l+∇Qφ̃(xk,l;xk),
respectively, and

η
�
1 = [η̃1 − ν

�
1]+, η

�
2 = [η̃2 − ν

�
1]+,

with ν� ≥ 0 being the water-filling level. The value ν� relates to
the total power PR and can be efficiently determined. Readers are
referred to [17, Fact 1] for the details.

Table 1: Averaged running times of CVX and PGM

pA = pB
Averaged Running Times (in Sec.)

2dB 4dB 6dB 8dB 10dB 12dB
2dB (CVX) 3.63 4.38 5.02 5.62 6.09 6.45
2dB (PGM) 0.92 1.20 1.37 1.24 1.09 0.98
10dB (CVX) 3.38 4.20 4.84 5.29 5.68 5.88
10dB (PGM) 0.87 1.17 1.35 1.37 1.21 1.07

5. NUMERICAL RESULTS AND CONCLUSIONS
In this section, we showcase two examples to compare the rate and
complexity performances of the exact and inexact DC. More com-
parisons will be provided in the full paper. Our simulation settings
are as follows: The number of transmit antennas and receive anten-
nas at the relay are set to beN = 3 andM = 6, respectively; all the
channels are randomly generated following i.i.d. complex Gaussian
distribution with zero mean and unit variance; the receive noise at
each node has the same unit variance, i.e., σ2

A = σ2
B = σ2

E = 1; for
simplicity, we assume that Alice and Bob have the same full-duplex
SI suppression factor ζA = ζB = 0.1, and the same transmit power
pA = pB; all the results were averaged over 100 random channel
realizations.

Fig. 1 shows the sum secrecy rates (in nats/s/Hz) of the exact
DC by CVX and the inexact DC by PGM (cf. Algorithm 1) when
increasing the relay power PR from 0 dB to 12 dB. Specifically, for
inexact DC we set Lk = 5, ∀ k and the stepsize αk,l is chosen
according to Armijo’s rule. For both exact and inexact DC, the DC
iterations stop when the relative rate increase is less than 5× 10−3.
From the figure, we see that there is negligible rate performance loss
between the exact DC and the inexact DC, especially for small relay
power region, say, PR ≤ 8 dB. This demonstrates that while the
inexact DC proceeds with an approximate or low-quality solution per
iteration, for a long run it is able to attain almost the same progress
as the exact DC. As mentioned before, the main benefit of inexact
DC lies in the computational complexity saving. To verify this, we
tabulated the averaged running times of CVX and PGM in Table 1
under the same setting as Fig. 1. As seen, the PGM runs much faster
than CVX for both pA = pB = 2 dB and pA = pB = 10 dB.
In particular, the running time of PGM is almost invariant to the
increase of PR, whereas that of CVX scales nearly linearly with PR.

To conclude, in this paper we have studied the sum secrecy rate
maximization (SSRM) problem for two-way full-duplex relay net-
works. The SSRM problem is nonconvex by nature. However, by
resorting to the semidefinite relaxation (SDR) and the difference-of-
concave (DC) program techniques, we show that a stationary solu-
tion of the SSRM problem can be iteratively computed. To further
reduce the iteration complexity, an inexact DC approach was also
proposed with a provable convergence to a stationary solution of the
SSRM problem.
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Fig. 1: Sum secrecy rate vs. the relay power threshold PR.
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