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ABSTRACT

In distributed inference, cooperation among networked agents
can be exploited to enhance the performance of each individ-
ual agent. In this paper, we consider signal classification over
a network of agents, where each agent observes a certain sig-
nal under a particular signal-to-noise ratio (SNR). Each agent
produces a statistic that summarizes its observations over a
time period and then forwards it to a fusion center for identi-
fying the type of signal in a global manner. A linear cooper-
ation strategy for signal classification is formulated as max-
imizing the classification probability subject to constrained
misclassification probabilities. We show that this problem can
be transformed into a convex problem under some conditions
and linear cooperation is a simple but effective strategy that
can greatly enhance the performance of signal classification
over networked agents.

Index Terms— M-ary hypothesis testing, signal classi-
fication, data fusion, distributed inference, convex optimiza-
tion.

1. INTRODUCTION

Signal classification has been developed into a widely prac-
ticed field with numerous applications, including cognitive
radios [1], image analysis and processing [2], speech recogni-
tion, fingerprint identification, seismic signal analysis, radar
target classification, and medical diagnosis, etc. Signal clas-
sification is defined as the categorization of input data into
identifiable pattern classes using the extraction of important
data from a background of impertinent details [3].

Distributed inference is the task of signal detection/class-
ification, parameter estimation, and target tracking by a net-
work of agents, based on cooperation. There have been many
works in literature on distributed binary detection [4, 5, 6] in
the last two decades, as well as its applications for wireless
sensor networks [7] and cognitive radios [8]. However, the
distributed solution for signal classification is relatively lim-
ited.

This work was supported by FRG-SUSTC1501A-08 and NSFC grant
61540044. Email: quanz@sustc.edu.cn.

In this paper, we focus on cooperation strategies for dis-
tributed inference that enables signal classification by mul-
tiple agents over the network. The problem of signal clas-
sification was approached through M -ary hypothesis testing,
where a network of spatially distributed agents observe the
signal independently, calculates local statistics, and then for-
ward them to a fusion center for making a global decision[9].
We here propose a linear cooperation strategy that uses the
weighted sum of the local statistics for the M -ary hypoth-
esis testing. The distributed signal classification with lin-
ear cooperation is formulated as maximizing the classification
probability with the misclassification probabilities being con-
strained. We show that the problem can be transformed into
a convex optimization problem. The design of such a signal
classification network requires careful analysis and optimiza-
tion in order to provide optimal classification and assess the
system performance.

2. SYSTEM MODEL

Consider a signal generated from M possible hypotheses
{H0,H1, ...,HM−1} with equal prior probabilities. A net-
work of K agents are deployed spatially over the field to
sense the transmitted signal. Under hypothesis Hi, the signal
received by the k-th agent at the n-th time instant is given as

x(k)(n) = hksi(n) + v(k)(n), n ∈ {0, 1, ..., N − 1}
(1)

where si(n) is the signal under hypothesis Hi, hk the channel
gain, and v(k)(n) the additive white Gaussian noise (AWGN),
i.e., v(k)(n) ∼ N

(
0, σ2

)
. It is assumed that hk remains un-

changed within each operation period. For simplicity, denote
v = [v(1)(n), v(2)(n), ..., v(K)(n)]T , i.e., v ∼ N(0,Σv),
and x = [x(1)(n), x(2)(n), ..., x(K)(n)]T . Without loss of
generality, the noise samples are assumed to be independent
and identically distributed (i.i.d) over time and across agents.

In the classification problem (1), we should choose Hi for
which p(x|Hi) is maximized. The optimal local solution at
agent k is the minimum distance receiver [10] and thus we
choose Hi if

T
(k)
i =

∑N−1
n=0 x(k)(n)si(n)− 1

2εi (2)
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is the maximum among {T (k)
0 , T

(k)
1 , ..., T

(k)
M−1}, where εi =∑N−1

n=0 |si(n)|2 is the energy of signal si. Correlation based
methods have also been shown to be optimal for signal clas-
sification in the frequency domain over cognitive radios net-
works [1, 11].

Fig. 1. Schematic representation of linear cooperation for M -
ary hypothesis testing. Since T

(k)
i is transmitted to the fusion

center through coded bits, we don’t need to consider the chan-
nel distortion between agents and the fusion center.

In this paper, instead of making a local decision discussed
above each agent forwards its local statistic T (k)

i to the fusion
center for a global decision. We propose a linear cooperation
method based on the minimum distance receiver (2) to com-
bine the statistics from the K agents, as illustrated in Fig. 1.
That is,

Gi =
∑K

k=1 wi,kT
(k)
i = wT

i Ti (3)

where wi,k is the weight coefficient of the k-th agent for Hi,
wi = [wi,1, wi,2, ..., wi,K ]T and Ti = [T

(1)
i , T

(2)
i , ..., T

(K)
i ]T .

The weight of a particular agent stands for its contribu-
tion to the global decision. Intuitively, the agent with a bet-
ter chance (usually under a higher SNR) to make the deci-
sion correctly should be assigned a lager weighting coeffi-
cient. In this paper, the global decision rule for linear co-
operation is to choose Hm if Gm is the maximum among
{G0, G1, ..., GM−1}, i.e,

m = arg max
0≤i≤M−1

Gi. (4)

3. PROBLEM FORMULATION

For each hypothesis Hi, we obtain a vector wi for calculat-
ing Gi in (3). Then we apply (4) to decide the most likely
hypothesis Hm.

To determine the error probability associated with (4) is
generally difficult since an error occurs if any of the M − 1
statistics exceeds the one associated with the true hypothesis.
In this paper, we apporach the error probability in a different
manner. We use a threshold τi to decide Hi if

Gi ≥ τi. (5)

Correspondingly, the classification probability PCi = P (Hi|Hi)
is given by

PCi = P (Gi ≥ τi|Hi) (6)

and the misclassification probability PMi,j = P (Hi|Hj)

PMi,j = P (Gi ≥ τi|Hj) , j ̸= i. (7)

Our objective is to maximize the classification probabil-
ity PCi while the individual error probability PMi,j is con-
strained by a specified value ϵi,j , j ̸= i. That is,

max
(wi,τi)

PCi

st. PMi,j ≤ ϵi,j ,

∀j ∈ {0, 1, ...,M − 1}, j ̸= i.

(8)

Recall the decision rule (4) based on linear corporation
(3). Under hypothesis Hi, the statistic Gi should be the max-
imum one among {Gj}0≤i≤M−1, but the noise and channel
distortion might cause misclassification. The weight vector
wi plays an important role in minimizing misclassification
errors. That is said, the distributed system provides the flex-
ibility to separate Gi away from {Gj}j ̸=i in signal space by
manipulating wi. This flexibility greatly improve the relia-
bility and robustness of the system, even where some agents
might be fooled by the noise, channel, or device malfunction.
Practically, the design of such a distributed signal classifica-
tion system should have ϵi,j < 0.5. We will show in the next
section how these considerations can simplify the analysis.

4. OPTIMAL SOLUTION

To solve (8) for each Hi, we first look into the two probabil-
ities PCi and PMi,j . According to (1) and (2), the statistic
T

(k)
i is Gaussian distributed with

E[T
(k)
i ] =

{
(hk − 1

2 )εi, Hi

hk

∑N−1
n=0 sj(n)si(n)− 1

2εi, Hj
(9)

Denote µij by the mean of Ti under hypothesis Hj . The
variance of the k-th agent

V ar
(
T

(k)
i

)
=

(
N−1∑
n=0

s2i (n)

)
(Σv)kk (10)

is all the same under different hypotheses, where (Σv)kk is
the kk-th element of the noise covariance matrix Σv . Also,
the covariance between T

(k)
i and T

(m)
i

Cov
(
T

(k)
i , T

(m)
i

)
= E

[(
N−1∑
n=0

vk(n)si(n)

)(
N−1∑
n=0

vm(n)si(n)

)]

=

(
N−1∑
n=0

si[n]

)2

(Σv)km

(11)

3632



is the same under different hypotheses.
From (3), it is obvious that Gi(x) is also Gaussian dis-

tributed. Thus, if Hj is true we have

E (Gi|Hj) = wT
i E (Ti|Hj) = wT

i µij (12)

and

V ar (Gi|Hj) = E
[
(Gi − µij)

2|Hj

]
= wT

i E
[
(Ti − µij)(Ti − µij)

T |Hj

]
wi

= wT
i Σijwi

(13)

where the kk-th element of Σij is given by (10), and the
kj-th element is given by (11). As a matter of fact, Σij

is not relevant to hypothesis Hj , such that we can repre-
sent it as Σi. Therefore, if Hj is true, we have Gi(x) ∼
N(wT

i µij ,w
T
i Σiwi).

Moreover,

PCi = Q

 τi − µT
iiwi√

wT
i Σiwi

 (14)

and

PMi,j = Q

τi − µij
Twi√

wT
i Σiwi

 (15)

where Q(.) is the tail probability of a zero mean unit variance
Gaussian variable.

Since Q(.) is a monotonic decreasing function, problem
(8) is equivalent to

min
(wi,τi)

τi − µT
iiwi√

wT
i Σiwi

st.
τi − µij

Twi√
wT

i Σiwi

≥ Q−1(ϵi,j)

∀j ∈ {0, 1, ...,M − 1}, j ̸= i

(16)

where the scalar τi and vector wi are the variables that we
need to optimize. For simplicity, we can write them into one
vector, that is,

τi − µT
ijwi =

(
1 −µij

T
)( τi

wi

)
(17)

and

wT
i Σiwi = (τi w

T
i )Σ̂i(τi w

T
i )

T (18)

where

Σ̂i =

(
0 01×(K−1)

0(K−1)×1 Σi

)
. (19)

By introducing new variables

gij =

(
1

−µij

)
(20)

and

ui =
(τi w

T
i )

T√
(τi wT

i )Σ̂i(τi wT
i )

T

, (21)

where ui is constrained by

uT
i Σ̂iui = 1, (22)

we can transform (16) into an equivalent form

min
ui

gT
iiui

st. uT
i Σ̂iui = 1

gT
ijui ≥ Q−1(ϵi,j),

∀j ∈ {0, 1, ...,M − 1}, j ̸= i.

(23)

The objective is a linear function constrained by M − 1 lin-
ear and one quadratic constraints. As the quadratic constraint
is non-convex, the optimization problem is non-convex and
cannot be solved efficiently using the existing methods.

Fortunately, we can relax the quadratic equality constraint
to a quadratic inequality constraint that is convex, i.e.,

uT
i Σ̂iui ≤ 1. (24)

We later show that the optimal solution of (23) always occurs
on the edge of the ellipsoid (24).

Recall from (2) that the minimum distance receiver ex-
ploited the correlation between the received signal and the hy-
pothesis under consideration. Consequently, E (Gi) should
be greater if the received signal is from hypothesis Hi than
from other hypotheses. Otherwise, Hi cannot be distinguish-
able from other hypotheses using the decision rule (4). There-
fore, it is always true throughout this paper that µii ≻ µij

and gij ≽ gii, where the notation ≽ means component-wise
inequality for vectors and ≻ is strictly component-wise in-
equality.

Consider the case where M = 3 (i.e., H0, H1, and H2)
and K = 1. For H2, the second element of g22 is g22(1) =
−µ22. Please note that gij(0) is always one from (20). If
g22(1) ≥ 0, we have

0 ≤ g22(1) < g20(1) < g21(1). (25)

As illustrated in Fig.2, the feasible set of (24) is split into the
sector unshadowed. Because the objective function gT

22u2 is
a line with slope less than gT

20u2 and gT
21u2, the optimal solu-

tion can be obtained by moving the line gT
22u2 over the sector

towards the origin. In this example, the optimum occurs at A
where uT

i Σ̂iui = 1 and gT
20u2 intersect.
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Fig. 2. A geometric illustration of the non-convex optimiza-
tion problem (23).

Similarly, we can also show that the optimum occurs on
the edge of the ellipsoid uT

i Σ̂iui ≤ 1 for g22(1) < 0.
As a result, the non-convex problem (23) is equivalent to

the following convex problem from relaxation

min
u

gT
iiui

st. uT
i Σ̂iui ≤ 1

gT
ijui ≥ Q−1(ϵi,j)

∀j ∈ {0, 1, ...,M}, j ̸= i

(26)

The problem can be readily solved using a standard toolbox
such as CVX [12]. Once the optimal solution of (26) is ob-
tained, denoted by ûi, we can calculate the optimal weight
vector ŵi using

ŵi =
ûi(2 : M)

∥ûi(2 : M)∥
. (27)

Please note that the result of (8) is not relevant to ∥wi∥.

5. SIMULATION RESULT

In this section, we assess the performance of the proposed
linear corporation scheme for the distributed signal classi-
fication system. Consider the case where we have M =
3 hypotheses, i.e., s0 = [1, 0, 0.5, 0, 1, 0, 0.5, 0], s1 =
[1, 0, 0, 0.5, 1, 0, 0, 0.5] and s2 = [1, 0, 0.5, 0, 1, 0, 0, 0.5].
We would like to compare the classification performance of
a single agent (A) against that of a network of two agents
(B and C). In the case of a single agent, the channel gain
h0 = 3 and Σv = 1. In the case of two agents, the channel
gains are h0 = 2 and h1 = 2.2, which are worse than the
case of a single agent, with Σv = [1, 0; 0, 1]. That is said, the
observations of B and C have lower SNRs than that of A. To
visualize the performance of signal classification, we plot the
correct classification probability PC0 versus the misclassifi-
cation probabilities PM0,1 and PM0,2 in a 3D figure.

For H0, we can obtain w0 by solving (8). As shown in
Fig.3 (a) and Fig.3 (b), a network of two agents with cooper-
ation outperforms a single agent, although the two agents (B

and C) have signal quality disadvantages compared with the
single agent (A).

Also we can see from Fig.3 (a) and Fig.3 (b) that PC0

is mainly constrained by PM0,2 ≤ ϵ0,2, i.e.,, gT
0,2u0 ≥

Q−1(ϵ0,2). This is caused by the fact that g0,2 ≼ g0,1. When
Q−1(ϵ0,2) = Q−1(ϵ0,1), the feasible set of u0 constrained
by gT

0,2u0 ≥ Q−1(ϵ0,2) is a subset of the feasible set con-
strained by gT

0,1u0 ≥ Q−1(ϵ0,1). In this case, the constraint
gT
0,2u0 ≥ Q−1(ϵ0,2) dominates the problem. Moreover, PC0

increases faster as PM0,1 increases since the distance from s0
to s1 is greater than that from s0 to s2 in the signal space,
i.e., ∥s0 − s1∥ > ∥s0 − s2∥. In other words, it is less likely
to misclassify s1 as s0.

(a) Single agent. (b) Two agents with linear operation.

Fig. 3. The correct classification probability versus the mis-
classification probabilities for M = 3.

The total classification probability is given by PC =
1
3 (PC0 + PC1 + PC2) as the hypotheses have equal prior
probabilities. The receiver operating characteristic (ROC)
curve plotted in Fig.4 also shows the benefit of cooperation
among agents.

Fig. 4. The ROC curve with PM = PM0,1
= PM0,2

=
PM1,0 = PM1,2 = PM2,0 = PM2,1 .

6. CONCLUSION

In this paper, we study a distributed system that is able to
identify a signal from multiple hypotheses. We have proposed
a simple but effective linear cooperation scheme for a network
of agents to jointly perform the task of signal classification.
The design of such a distributed system can be formulated
into a convex program that minimizes the error probability.
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