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ABSTRACT

State-of-the-art algorithms for energy-efficient power allocation in
wireless networks are based on fractional programming theory, and
allow to find the global maximum of the energy efficiency only in
noise-limited scenarios. In interference-limited scenarios, several
sub-optimal solutions have been proposed, but an efficient frame-
work to globally maximize energy-efficient metrics is lacking. The
goal of this work is to fill this gap by making use of fractional pro-
gramming theory jointly with monotonic optimization. The result-
ing optimization framework is useful for at least two main reasons.
First, it sheds light on the ultimate energy-efficiency performance of
wireless networks. Second, it provides the means to benchmark the
energy efficiency of state-of-the-art, but sub-optimal, solutions.

Index Terms— Energy Efficiency, Fractional programming,
Monotonic optimization, Resource allocation, Power control.

1. INTRODUCTION AND RELATION TO PRIOR WORK

The percentage of the total CO2-equivalent emissions due to the in-
formation and communication technology (ICT) is estimated to be
5% [1]. While this may seem a small percentage, it will rapidly
increase, due to the advent of 5G networks and the associated ex-
ponential growth of connected devices. Credited sources foresee
the number of connected devices to reach 50 billions by 2020, with
a data traffic increase of a factor 1000 [2]. If no countermeasures
are taken, the energy demand to operate and provide such massive
data rates to this massive number of devices will become unmanage-
able, and the resulting greenhouse gas emissions and electromag-
netic pollution will exceed safety thresholds. While restricting the
global ICT usage is unrealistic, a promising answer to this issue lies
in optimizing the energy efficiency (EE) of ICT systems, defined
as the ratio between the data rate and associated energy consump-
tion. Given the fractional nature of the EE, the main mathematical
framework adopted for EE optimization is fractional programming
theory [3]. However, while fractional programming algorithms ex-
hibit polynomial-time complexity in noise-limited systems [4], their
complexity becomes prohibitive in interference-limited systems [3].
A common way to circumvent this problem is to only consider sub-
optimal orthogonal or semi-orthogonal transmission schemes as well
as interference cancellation techniques, to fall back into the noise-
limited case. In [5, 6] multi-carrier networks are considered, and the

A. Zappone and E. Jorswieck are funded by the German Research Foun-
dation (DFG) with grant CEMRIN - ZA 747/1-3, and in the Collaborative Re-
search Center 912 “HAEC”, respectively. L. Sanguinetti is supported by the
ERC Starting Grant 305123 MORE. E. Björnson is supported by the Swedish
Foundation for Strategic Research (SFF).

global energy efficiency (GEE) of the system (defined as the ratio
between the sum achievable rate and the total consumed power) is
optimized using orthogonal or semi-orthogonal subcarrier allocation
schemes. In [7], the authors consider a multiple-antenna system and
aim at maximizing the GEE when non-linear interference cancel-
lation techniques are used. However, orthogonal interference sup-
pression schemes inevitably result in a poor resource reutilization in
multi-link networks and are thus not reasonable in large networks.
Also, practical impairments (such as, for example, channel estima-
tion errors) largely reduce the performance of interference cancel-
lation schemes and break orthogonality. Alternative approaches em-
ploy suboptimal procedures, typically based on the use of alternating
optimization techniques, as in [8], where the minimum of the indi-
vidual EEs is maximized and in [9, 10] where both the maximiza-
tion of GEE and of the sum of the individual EEs are considered. In
[11, 12] fractional programming is used in conjunction with sequen-
tial convex optimization to develop a framework able to determine
local optima of the system EE with polynomial-time complexity.

The main issue with all the cited works is that, although all pro-
posed solutions exhibit an affordable complexity, they are not guar-
anteed to achieve global optimality. Indeed, a framework to obtain
the global solution of EE maximization problems is currently lack-
ing. This prevents one from gaining insight on the ultimate energy-
efficient performance of wireless networks and thus from bench-
marking the performance of suboptimal methods against the opti-
mal solution. This work aims at filling these gaps by developing
an optimization framework to globally maximize the EE in wireless
networks. This will be done by merging fractional programming
theory with monotonic optimization, which is a theory that provides
algorithms to globally solve certain classes of non-convex problems
[13, 14]. Monotonic optimization has been previously used to glob-
ally solve power control and scheduling problems [15], as well as
develop rate maximization schemes and beamforming techniques
[16, 17]. Recent surveys of monotonic optimization applied to wire-
less communications are [18, 19].

2. SYSTEM MODEL AND PROBLEM STATEMENT
Consider a wireless network wherein K mutually interfering links
are active over a communication bandwidth of B Hz. Each link in-
cludes a single-antenna transmitter node and a receiver node (possi-
bly equipped with multiple antennas). Denoting by p theK×1 vec-
tor collecting all users’ transmit powers, we assume the k-th link’s
signal-to-interference-plus-noise ratio (SINR) γk(p) takes the fol-
lowing general form:

γk(p) =
αkpk

σ2 + φkpk +
∑K

i=1,i 6=k piβi,k
(1)
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where σ2 accounts for the thermal noise power at the receiver (over
the bandwidth B), αk is the k-th user’s channel power gain, and
{βi,k} are the multi-user interference coefficients, which depend on
the other users’ channels as well as on global system parameters.
The coefficient φk models a self-interference term, proportional to
the useful power, which arises in several relevant instances of com-
munication systems [20], such as hardware-impaired networks, re-
ceivers with imperfect CSI estimation, and relay-assisted commu-
nications. By setting φk = 0, the expression in (1) reduces to
the canonical SINR expression in interference networks. For later
convenience, observe that the k-th user’s achievable rate can be ex-
pressed as B log2(1 + γk(p)) = q+k (p)− q−k (p) with

q+k (p) = B log2

(
σ2 + (αk + φk)pk +

K∑
i=1,i 6=k

piβi,k
)

(2)

q−k (p) = B log2

(
σ2 + φkpk +

K∑
i=1,i 6=k

piβi,k
)
. (3)

The EE (measured in bit/Joule) of link k is defined as the ratio of
the achievable rate and the total consumed power (neglecting the
functional dependence of γk from p for notational simplicity):

EEk(p) =
B log2(1 + γk)

µkpk + Ψk
(4)

wherein µk ≥ 1 is the inverse of the power amplifier efficiency of
transmitter node k and Ψk is the circuit power required to operate
link k accounting for the dissipation in analog hardware, digital sig-
nal processing, backhaul signaling, and other overhead costs (such as
cooling and power supply losses) [21]. Clearly, (4) is a link-centric
(or user-centric) performance metric. A network-centric definition
of EE requires to combine the individual energy efficiencies of the
different links. Although different approaches have been proposed, a
single definition that unarguably best represents the EE of the whole
network is not available, since the different EEs are typically con-
flicting objectives [3, 22]. Two well-established metrics to measure
the network EE are the GEE and the weighted minimum energy ef-
ficiency (WMEE), defined as [3, 4]:

GEE(p) =

∑K
k=1B log2(1 + γk)∑K

k=1 µkpk + Ψk

(5)

WMEE(p) = min
k=1,...,K

wk
B log2(1 + γk)

µkpk + Ψk
. (6)

The GEE has the strong physical meaning of network benefit-cost ra-
tio, in terms of global amount of reliably transmitted data and global
amount of consumed energy. However, it does not depend on the
individual EEs, and thus it does not allow to tune the EE of the in-
dividual links according to specific needs. Instead, the WMEE is
more connected to a multi-objective optimization perspective [22],
in which the individual EEs are the objectives to maximize. By
varying the weights in (6) it is possible to prioritize the links that
require a higher EE and to describe the complete energy-efficient
Pareto boundary of the system.1

The goal of this work is to find the global solution of the follow-
ing optimization problem:

max
p

u(p) s.t. p ∈ P (7)

1For the considered system, the Pareto-boundary is the outer boundary of
the K-dimensional region containing all feasible energy-efficient operating
points, i.e.. all feasible K × 1 vectors [EE1(p), . . . ,EEk(p)]

T .

with

P=
{
p ∈ RK

+ ; ∀k pk ∈ [0, Pmax,k], B log2(1 + γk)≥Rmin,k

}
(8)

wherein the objective u(p) can be either the GEE or the WMEE,
Pmax,k and Rmin,k denote the maximum feasible transmit power
and minimum acceptable rate for link k, respectively.

3. PROBLEM SOLUTION

The optimization problem in (7) is a fractional program. However,
fractional programming algorithms exhibit polynomial-time com-
plexity only if the numerator and denominator of the fraction are re-
spectively concave and convex, and if the constraints are also convex
[3]. Unfortunately, this requirement is not fulfilled in interference-
limited networks since the presence of q−k (p) as given by (3) (which
is non-zero whenever multi-user interference is present) makes the
numerator non-concave. For these scenarios, fractional programs
are in general NP-hard, and the conventional approach is to resort
to global optimization algorithms. However, these methods oper-
ate by performing an exhaustive search of the whole feasible set,
with a prohibitive computational complexity and a convergence that
is only guaranteed if the functions have a limited variability (e.g.
Lipschitz continuity). A powerful optimization framework to reduce
such computational burden and to ensure a guaranteed convergence
is monotonic optimization [13]. Roughly speaking, the basic idea
is that if the objective to maximize is increasing in all optimization
variables, then it is not necessary to explore the complete feasible
set, but only its outer boundary. The main difficulty in applying this
framework to (7) is that, unlike what happens for achievable rates,
both the GEE and the WMEE are not monotonic in p. As shown
next, this difficulty can be overcome by an interplay of fractional
programming and monotonic optimization. We start by providing
some necessary preliminaries on both theories and then develop the
proposed optimization framework.

3.1. Fractional programming
A comprehensive overview of fractional programming applied to EE
maximization in wireless networks can be found in [3].

Definition 1 (Generalized fractional program) Let D ⊆ RN and
consider the functions fk : D → R and gk : D → R++, with
k = 1, . . . ,K. A generalized fractional program is the optimization
problem defined as

max
x

min
k=1,...,K

fk(x)

gk(x)
s.t. x ∈ D. (9)

If K = 1, then (9) reduces to the so-called single-ratio fractional
program:

max
x

f1(x)

g1(x)
s.t. x ∈ D. (10)

Since the objective function in (9) is in general not concave,
standard convex optimization algorithms are not guaranteed to solve
(9) and specific algorithms are required. Towards this end, we have
the following key result.

Proposition 1 [23, 24]. A vector x? ∈ D solves (9) if and only if

x? = arg max
x∈D

{
min

k=1,...,K

[
fk(x)− λ?gk(x)

]}
(11)

with λ? being the unique zero of the auxiliary function F (λ):

F (λ) = max
x∈D

min
k=1,...,K

{fk(x)− λgk(x)} . (12)
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This result allows solving (9) by finding the unique zero of F (λ).
To this end, the most widely used algorithm is the (Generalized, if
K > 1) Dinkelbach’s algorithm [24, 25], reported in Algorithm 1.

Algorithm 1 Generalized Dinkelbach’s algorithm
Initialize λ0 with F (λ0) ≥ 0, j = 0;
repeat

Solve the problem:
x?
j = arg max

x∈D

{
mink=1,...,K

[
fk(x)− λjgk(x)

]}
;

λj+1 = mink=1,...,K
fk(x

?
j )

gk(x
?
j )

;
j = j + 1;

until F (λj) > ε

It can be shown that the update rule for λ follows Newton’s method
applied to the function F (λ). Hence, Algorithm 1 exhibits a super-
linear convergence rate, but converges to the global optimum of the
corresponding instance of fractional problem only provided that (11)
can be globally solved at each iteration. If (11) is not a convex prob-
lem, this calls for global optimization algorithms that usually require
to explore the whole feasible set.

3.2. Monotonic optimization
Monotonic optimization provides a framework to globally solve
problems that exhibit monotonicity or hidden monotonicity struc-
tures [13, 14]. Some fundamental definitions and results from
monotonic optimization theory are briefly recalled henceforth.

Definition 2 (Monotonicity in RN ) A function f : RN → R is
monotonically increasing if f(y) ≥ f(x) when y � x, with �
denoting component-wise ordering.

Definition 3 (Hyper-rectangle in RN ) Let a, b ∈ RN with a �
b. Then, the set of all x ∈ RN such that a � x � b is a hyper-
rectangle in RN and is denoted by [a,b].

Definition 4 (Normal and Co-normal sets) A set S ⊂ RN is nor-
mal if ∀x ∈ S, the hyper-rectangle [0,x] belongs to S. A set
Sc ⊂ RN is co-normal in [0,b] if ∀x ∈ Sc, then [x,b] ⊂ Sc.
A given function h : RN → R defines a normal or a co-normal set
if the following results hold true:

Proposition 2 ([13]) The set S = {x ∈ RN : h(x) ≤ 0} is normal
and closed if h is lower semi-continuous and increasing. The set
Sc = {x ∈ RN : h(x) ≥ 0} is co-normal and closed if h is upper
semi-continuous and increasing.

Definition 5 (Monotonic optimization) A monotonic optimization
problem in canonical form is defined as

max
x

f(x) s.t. x ∈ S ∩ Sc (13)

wherein f : RN → R is an increasing function, S ⊂ [0,b] is a
compact, normal set with nonempty interior, and Sc is a closed co-
normal set in [0,b].

The main result of monotonic optimization theory states that the so-
lution to (13) lies on the upper boundary of S ∩ Sc [13, Proposi-
tion 7]. Therefore, methods like the polyblock algorithm [13] and
the branch-reduce-and-bound (BRB) algorithm [14] can be used to
globally solve (13) by searching only on the upper boundary of the
feasible set, thus drastically simplifying the problem. Nevertheless,
we remark that the complexity of monotonic optimization methods

is still exponential in the problem size. However, as already ob-
served, it is much lower than general global optimization methods
which do not exploit any monotonicity structure. This makes mono-
tonic optimization attractive for the development of a framework to
benchmark any suboptimal method for solving (13).

3.3. GEE maximization
The GEE maximization belongs to the class of single-ratio fractional
problems. So, finding its solution by the Dinkelbach’s algorithm
requires to solve the following auxiliary problem at iteration j:

max
p

K∑
k=1

B log2(1 + γk)− λj (µkpk + Ψk) s.t. p ∈ P (14)

for any given positive λj , and with P denoting the feasible set of
Problem (7). Note that the above problem is not in convex form due
to the achievable rates {B log2(1 + γk)}, which also appear in the
rate constraints.
Proposition 3 Problem (14) can be reformulated as a monotonic
problem in canonical form.
Proofsketch: Problem (14) can be equivalently written as

max
p

q+(p)− q−(p, λj) s.t. p ∈ P (15)

wherein q+(p) and q−(p, λj) are increasing in p and given by

q+(p) =

K∑
k=1

q+k (p), q−(p, λj) =

K∑
k=1

q−k (p) + λj

(
µkpk + Ψk

)
.

The above reformulation is not yet a monotonic optimization prob-
lem in canonical form since the difference q+(p) − q−(p) of two
increasing functions is not monotonic in the sense of Definition 2.
To proceed further, define pmax = [Pmax,1, . . . , Pmax,K ] and intro-
duce the auxiliary variable t = q−(pmax, λj) − q−(p, λj). Then,
for any given λj , rewrite the auxiliary problem in (15) as

max
(t,p)

q+(p) + t s.t. (t, p) ∈ P ∩Q (16)

with

Q=

{
(t,p) :

0 ≤ t ≤ q−(pmax, λj)− q−(p, λj)
0 ≤ t ≤ q−(pmax, λj)− q−(0K , λj)

}
. (17)

As for the constraints, the minimum rate constraint functions are
also not monotonic in the sense of Definition 2. However, the set of
constraints B log2(1 + γk) − Rmin,k ≥ 0 with k = 1, . . . ,K, can
be equivalently rewritten as the following single constraint:

min
k=1,...,K

[
q+k (p)− q−k (p)−Rmin,k

]
≥ 0 ⇐⇒ (18)

min
k=1,...,K

q+k (p)−

 K∑
i=1

q−i (p)−
K∑

i=1,i 6=k

q−i (p)

−Rmin.k

= (19)

min
k=1,...,K

q+k (p) +

K∑
i=1,i 6=k

q−i (p)−Rmin,k


︸ ︷︷ ︸

q̃+(p)

−
K∑
i=1

q−i (p)︸ ︷︷ ︸
q̃−(p)

≥ 0 (20)

which is the difference of the two increasing functions q̃+(p) and
q̃−(p). Similarly as above, we can thus introduce the auxiliary vari-
able s and reformulate the problem in (16) as

max
(s,t,p)

q+(p) + t (21)

s.t. (t, p) ∈ Q , 0 ≤ s ≤ q̃−(pmax)− q̃−(0K)

q̃−(p) + s ≤ q̃−(pmax) , q̃+(p) + s ≥ q̃−(pmax)

3618



Finally, it can be verified that Problem (21) fulfills Definition 5, thus
being a monotonic problem in canonical form. The exact details are
omitted due to space constraints but they can be found in [26]. �

3.4. WMEE maximization
The maximization of WMEE belongs to the class of generalized
fractional programs and requires to solve the following auxiliary
problem at iteration j:
max
p

min
k=1,...,K

q+k (p)−q−k (p)−λj(µkpk+Ψk) s.t. p ∈ P. (22)

As before, the objective function is not monotonic.
Proposition 4 Problem (22) can be reformulated as a monotonic
problem in canonical form.

Proofsketch: Letting νk(p, λj) = q−k (p) + λj (µkpk + Ψk), we
can proceed as follows:

q+k (p)− νk(p, λj) = q+k (p)−

 K∑
i=1

νi(p, λj)−
K∑

i=1,i 6=k

νi(p, λj)


=

q+k (p) +

K∑
i=1,i 6=k

νi(p, λj)

− K∑
i=1

νi(p, λj). (23)

By similar steps as in Section 3.3, we define t =
∑K

i=1 νi(pmax, λj)−∑K
i=1 νi(p, λj), and reformulate (22) as

max
(t,p)

min
k=1,...,K

q+k (p) +

K∑
i=1,i 6=k

νi(p, λj) + t s.t. (t, p) ∈ P ∩Q′

with

Q′ =

{
(t,p) :

0 ≤ t ≤
∑K

i=1 νi(pmax, λj)− νi(p, λj)

0 ≤ t ≤
∑K

i=1 νi(pmax, λj)− νi(0K , λj)

}
(24)

which, reformulating the rate constraints as in Section 3.3, can be
checked to fulfill Definition 5 (See [26] for more details). �

4. NUMERICAL RESULTS

To exemplify the benefits of the proposed optimization framework,
the uplink massive MIMO scenario described in [20] is considered,
with B = 180 kHz. A base station equipped with 50 antennas and
subject to hardware impairments serves a square area with edge of
1 km, where K = 5 mobiles are randomly placed. It is shown
in [20] that, assuming MRC detection, the SINR enjoyed by the
generic mobile k is expressed as in (1), wherein the coefficients αk,
φk, and βi,k depend only on the propagation channels (here mod-
eled as realizations of Rayleigh fading with path-loss model as in
[27]) and on a parameter ε ∈ [0, 1] related to the hardware quality
(ε = 0 means ideal hardware). Here we set ε = 10−2. All mo-
biles have the same maximum feasible power Pmax and hardware-
dissipated power Ψk = −20 dBW. The noise power is generated as
σ2 = FBN0, wherein F = 3 dB and N0 = −174 dBm/Hz are the
receiver noise figure, and noise power spectral density, respectively.
No rate constraints have been enforced (i.e. Rmin,k = 0 ∀k).

In Fig. 1, the GEE maximization framework is used to bench-
mark the (theoretically suboptimal) procedure from [20]. As a base-
line scheme, we also report the GEE obtained by full power allo-
cation (i.e., pk = Pmax ∀k). The results are obtained by averag-
ing over 103 independent channel scenarios. Our benchmark allows
showing that the polynomial-time algorithm in [20] enjoys virtually
optimal performance. Also, the achieved GEE eventually saturates,

Pmax [dBW]
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Fig. 1. GEE versus Pmax by: (a) global optimum by monotonic
optimization plus fractional programming; (b) GEE maximization
algorithm proposed in [20]; (c) Full power allocation.
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Fig. 2. Energy-efficient Pareto region for K = 2, by: (a) WMEE
maximization by monotonic optimization plus fractional program-
ming; (b) grid search over power; (c) GEE maximization point.

because for large Pmax only the transmit power required to achieve
the global maximizer of the GEE is used. Fig. 2 plots the energy-
efficient Pareto region of the system for K = 2. All other sys-
tem parameters are as in Fig. 1. The Pareto region is obtained by
solving the WMEE maximization problem for different choices of
the weights. As a comparison, we report the energy-efficient region
obtained by a grid search over the transmit powers. As seen, the
proposed framework allows one to characterize the complete region,
while the grid search easily fails to find all parts. Also, it is inter-
esting to observe that the point corresponding to GEE maximization
lies on the Pareto-boundary. In general, this is not guaranteed, be-
cause the GEE is not increasing in all individual EEs.

5. CONCLUSIONS

This work has developed an optimization framework to globally
maximize the EE in wireless networks by jointly exploiting mono-
tonic optimization theory and fractional programming theory. The
framework is general enough to be applied to several instances of
communication systems, such as general interference networks,
massive MIMO systems, relay-assisted communications. While
still exhibiting an exponential complexity, the developed framework
enjoys a guaranteed convergence and a much lower complexity than
standard global optimization algorithms. Also, it enables to bench-
mark practical algorithms, which are not theoretically guaranteed to
achieve global optimality, as illustrated in the numerical results.
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