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ABSTRACT Note that the sum-rate of a MIMO relay system depends
We consider the problem of sum-rate maximization in masen the amplification matrix, i.e. theeamformenf the relay.
sive MIMO two-way relay networks with multiple (commu- However, an optimal design of the beamformer leads to a non-
nication) operators employing the amplify-and-forwardFJA convex (in general NP-hard [1]) optimization problem. The
protocol. The aim is to design the relay amplification ma-authors of [1] developed a polynomial-time iterative metho
trix (i.e., therelay beamformeérto maximize the achievable based on a semidefinite relaxation (referred to as POTDC) to
communication sum-rate through the relay. The design proldackle the problem. POTDC guarantees a rank-one solution
lem for the case of single-antenna users can be cast as a n@mly for the special case of single (communication) operato
convex optimization problem, which in general, belongs to &and hence, its solution is generally associated with a gigh
class of NP-hard problems. We devise a method based on thess. Furthermore, each iteration of POTDC consists of-solv
minorization-maximization technique to obtain qualityiso ing a convex MAXDET optimization that has a large com-
tions to the problem. Each iteration of the proposed methogutational burden. On the other hand, POTDC results outper-
consists of solving a strictly convex unconstrained quiacira formthose obtained by the approximate (projection-baaked)
program; this task can be done quite efficiently such that thgorithm suggested in [4]. Additionally, [1] includes hestit
suggested algorithm can handle the beamformer design falgorithms based on one/two dimensional search for the case
relays with up to~ 70 antennas within a few minutes on an with single operator.
ordinary PC. Such a performance lays the ground for the pro- In the case of an arbitrary number of operators, the liter-
posed method to be employed in massive MIMO scenarios. ature does not offer efficient methods that can lead to (some
Index Terms— Beamforming, minorization-maximization Stong type of) optimality of the obtained solutions. Fur-
massive MIMO, relay networks, sum-rate. thermore, most of the proposed methods in the literature are
merely suitable for small scale problems (see e.g. [1, 51). |
this paper, the problem is considered in a rather genenal for
enabling the user to freely choose the number of operdtors
and the structure of the associated matrices (i.e., thenghan

Sum-rate maximization is a fundamental task arising inalign arameters). We devise an iterative method based on the
design for communication, and particularly relay netwonks parameters). L . .
minorization-maximization technique to tackle the design

which relays are often used to enhance the quality of commus e m. Applving the proposed method increases the value
nication between pairs of users within the network. In suct’ - APPYYING brop

S . of the objective function at each iteration. Consequeritly,
networks, two-way relaying is shown to achieve better spec- . L . .

L - "~ "can be shown that the obtained solution is a stationary point
tral efficiency as compared to one-way relaying [1]. Various

; . .. of the problem for arbitrary.. The proposed method is com-
protocols including decode-and-forward (DF), and amplify - - .
and-forward (AF) have been proposed in the literature fo utationally efficient and hence can be applied to largéesca

two-way relay networks [2, 3]. Contrary to the DF case, the IMO syst.emé (with Mg antg nnas). Indeed, each iteration
AF relaying does not perform any signal decoding at the reIayOf the devised method consists of sol_vmg a convex uncon-
strained quadratic program (QP); which can be performed

and hence enjoys a lower hardware and software Complexn%ﬁiciently for instance with ar©(n3) complexity (where
as well as smaller transmission delay. As a result of such sim . . . 9

. . A .0 is the problem dimensiom = Mp) [6]. As a result, the
ple processing requirement, AF relaying is a more suitable g

scheme for large-scale or massive MIMO systems.

1. INTRODUCTION

1This paper can address the beamforer design problem insaaje sce-
*Please address all the correspondence to Mohammad MalyfisNa  narios where the near optimality of zero-forcing does ndthe.g., low-
Phone: +983113912450; Email: mnaghsh@cc.iut.ac.ir middle regime massive MIMO systems.
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method can handle problems with ~ 103 variables (i.e., wherein||.||2 and||.|| denote the Euclidean norm of the vec-
Mpr ~ 70) on an ordinary PC within a few minutes. tor and the Frobenius norm of the matrix arguments, respec-
tively. The latter equation can be expressed with respect to

2. PROBLEM FORMULATION (wrt) g asg” Cg < Pr where
L 2

We consider a MIMO AF two-way r_elay network cgnsisting C - 0§1M§ + Z Zpk,z((hk,zhEZ)T ©Lu). (7)
of Mr antennas[ operators and pairs of user terminals. We =1 k1
assume single-antenna user terminals and flat fading ctsann
between theé:'" user of thel*” operator and the relay, which
are denoted byh,, ; } [1]. The received signal at the relay can
be expressed as [1, 4],

q’herefore, the design problem (i.e., sum-rate maximinatio
in MIMO AF relay networks withL operators can be cast as

1.2 gl®, g
max = lo L+ ,
4 B Z Z 82 ( gh(Yhy + Ari)g + Ji,l)

L 2
=1 k=1
r= hyzp; +ng (1)
22 st g'Cea o

wherez;, ; is the transmitted symbol by the” user of the ~Note that the inequality constraintin the above problencis a
[th operator with powepy, ; (given byE{|£kl|2})y anan tive (le satisfied with equality) at the Optimal pOint. Néor
denotes the circularly symmetric white Gaussian noise witprecisely, assume thgt is an optimal solution to (8) with
covariance matrix21I at the relay. By employing the AF pro- 8" Cg = Py < Pr. Then a scaled version gf which sat-
tocol, the transmit signal of the relay is givenby= Gr with  isfies the constraint with equality, i.€: = \/Pr/F g, will

G € CMrxM=r pheing the relay amplification matrix, which is lead to a larger objective value which is a contradiction.

to be designed. We assume reciprocal channels between the

relay and users [4]; thus, the received sigpal of the k" 3. SUM-RATE MAXIMIZATION
user at thé'* operator becomes

T ~ The aim is to design the AF amplification mati in order
Ykt = By ¥+ ngy @) to maximize the sum-rat®,.,,.,. Considering the fact that
wheren,, ; is the associated (white) noise component (withthe inequality constraint in (8) is satisfied with equalityree
variancea,%’l) and(.)T stands for transpose. The sum-rate ofoptimal solution, the optimization in (8) can be recast as
the system can be formulated as [4]

L 2
max Z Z [log (gHAk:,zg) —log (gHBk:,lg) } 9

L 2
1
Roum = 3 D> logy(1 4 k) 3) £ I=1 k=1 . o
=1 k=1 where we have used the following definitions:
Hereinny,; denotes the signal-to-interference-plus-noise ra- 2

tio (SINR) for thek™" user of thel™" operator and it has the By, = Y + Agy + %cy Ay =B+ &, (10)
following expression [4] R
Hg The above optimization problem is non-convex and belongs
= g Ak,lg 5 (4) to aclass of NP-hard problems in general [1]. Note that the
g (Tt + ’“*l)ngak-,l objective function of (9) is invariant with respect to scal-
whereg = ved G) that vec(.) operator stacks the columns ofing; therefore, we can deal with the unconstrained problem
a matrix into a vector(.) stands for Hermitian transpose, and then scale the solutign such that it satisfies the con-

and the matrice®;, ;, Y, Ay, are defined as straintg? Cg = Pg. In this paper, we use the minorization-
’ ' ’ maximization technique to tackle the non-convex design

@i =pry (b3, ® hgl)H (hi_,,®h{,) (5) problem formulated in (9). Minorization-maximization

Nk,

- N r (MaMi) is an iterative technique that can be used for ob-
Y= Z ZP‘;;; (hgj@ hk,l) (hgj@ hk,l) taining a solution to the general maximization problem[7, 8
k1#l -
max f(z) subjectto c(z) <O0. 11
AkJ _ 0_]22 (IMR ® (hk;ylh]?l)) . z f( ) ] ( ) — ( )

The sum-rate maximization is constrained via the totalE@ch iteration of MaMi consists of two steps:

available powePr at the relay, viz. e Minorization Step: Finding(*)(z) such that its max-
E{|F2} = tr{E{GrrGH}} (6) imization is simpler than that of(z) andp #)(z) mi-
L 2 norizesf(z), i.e.,
= 1|Ghy |2+ 0%||G|%2 < P . ~ o) (e (e
;;pk,zﬂ killz + orIGlE < Pr 5% () < f(), vz, )(Z( 1)) _7 (Z< 1>)
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with z(*~1) being the value of at the(x — 1) itera-  where

tion. L s B
(k) — kL L, 15
e Maximization Step: Solving the following optimization Q ;kil |:(g(n))HBkAlg(ﬁ) +Uka| (19)
problem to obtairz(): R '
() — br; — 2U,g® |,
max p*)(z) subject to ¢(z) <0 d ;; [ o w8 }
Note that the following inequality holds due to the con- _9
cavity oflog(z) for all z, 2y € R*: by, = m Arg™,  (16)
g\ kI8
1
1 <1 —(z — . 12 4Pg
og(z) < log(xg) + 0 (x — o) (12) Uy, = (W _|_€) I

Settingzy = gi’Bygo andz = g¥By g leads to a mi-
norizer for —log(g” By ;g). By substituting the minorizer
into (9), we have the following maximization problem at the
(k + 1)t" iteration:

andwy; denotes the principal eigenvectorAf, ;. Note that
B;,; >~ 0, and also,U;; >~ 0 as it is a scaled version of
identity matrixI with a positive scalar. Therefore, the matrix
Q) is positive-definite at each iteration. Consequently, the
9 . problemin (14) s strictly convex w.r.gg. The unique solution
H _ H to this optimization is obtained by solving the system oéén
mgax ;; {log(g Ay.ig) 4(g<”))HBik,zg(”) g"'Brg| - equation2Q Mg + q*) — 0 viz.
(13) ) 5

Inspired by the rich literature on semidefinite relaxation, g=—= (Q(H+1)) q™. (a7)
we note that by considerin = gg” as the optimization 2
variable in (13) and dropping the rank-1 constraint, a cenve  Remark 1:Note that the above solutiog does not nec-
alternative of (13) can be obtained at each iteration. Hewev essarily satisfy the constraigt’ Cg = Py of the original
there is no guarantee for a rank-1 solutdnand hence, this problem (9) at each iteration. As mentioned before, we can
approach is associated with a synthesis loss. In additpn, ascale the obtained solution at the convergence to deal ligh t
plying the relaxation leads to iteratively solving a MAXDET issue as the objective function in (9) is scale invariantwHo
problem possessing a high computational burden. Insteadyer, the derivation of the matri&; in Lemma 1 requires
in the sequel, we devise a computationally efficient methothe satisfaction of the constraint at each iteration. Tioeee
that increases the objective value at each iteration and guave need to scale the obtaingdat each iteration such that
antees the first-order optimality condition for the solotip. g Cg = Pr. Note also that the scaling does not affect the
To this end, we proceed by finding a minorizer for the termconvergence of the sequence of the objective function galue

log(g” Ay, 1g) as a function of using the following lemma Table 1 summarizes the steps of the proposed method for
(whose proof is omitted for the sake of brevity). relay beamformer design to maximize the communication
sum-rate. The suggested method improves the value of the
Lemma 1. Let s(x) = —log(x"Tx) andx”Cx = P sum-rate at each iteration. As a result, employing the pro-
for positive-definite matrice¥, C in C¥*N, andP € R*.  posed method will lead to the convergence of the network
Then, the following inequality holdéx, xo: sum-rate value due to the upper boundedness of the sum-rate

metric (see [7-9] and references therein for details of the
s(x) < s(x0) + R (b7 (x —x0)) + (x —x0)"U(x —x0)  convergence of MaMi technique).

whereb = (m2-) Txo, U = (G- +¢) L wi s 4. SIMULATIONS
the principal eigenvector df', ande > 0 being an arbitrary ] ) )
scalar. In this section, the performance of the proposed method is

evaluated via Monte-Carlo simulations. An AF based bidi-
Assume thagl Cg = Py at each iteration (see Remark 1 rectional MIMO relay network with operators and/ an-
below). Now by using Lemma 1 for minorizing the objective tennas at the relay is considered. The variances of the Gaus-
of (13), the following unconstrained QP will be obtained: ~ Sian noises for the relay and users are assumed to be equal,
i.e., 0% = op, = o2. We assume that the transmit powers
) Hy(5) () H of the relay and users are identical, i.Bg = py; = p. The
8 Qg+ R (q ) g (14)  sNRis defined ap/o2. Moreover, the normalized distance
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Table 1: Relay Beamformer Design Algorithm

Step Q Initialize g with a random vector ICMa (and scale it such that
gHCg = PR); setk = 0. 13
Step 1 ComputeQ(*) andq(*) using (15).

Step 2 Solve the convex problem in (14) using either the closedafr
expression (17) or the direct methods to obgifi+1).

Step 3 Scale the obtained solutiggf**1) such that

(gt )H gt = Pp:setr «+ k + 1.

Step 5 Repeat steps 1-3 until a pre-defined stop criterion isfaadise.g.
|fs1) — f(®)| < ¢ (wheref denotes the objective function of the prob-
lem (9)) for somes > 0.

—&— Proposed{/y = 8)
—e— POTDC (M = §)
—%— Proposed/x = 1)
—3— POTDC (/5 = 4)

sum-rate (bit/sec/Hz)

; ; ; ; ; i i ;
81 o0z 03 0.4 05 06 07 08 09 1
25 . . . NJF ratio

—&— Proposed/; = 8)
—&— POTDC (M = §)
—w— Proposed|/; = 4)

—H— POTOC O/ = 4 A Fig. 22 The sum-rate values versus N/F ratio for= 2 and
SNR=20dB.

sum-rate (bitlsec/Hz)

—&— Proposed|
—e— PoTDC

L L
20 25 30

15
SNR (dB)

Average run-time (s)

Fig. 1. The sum-rate values associated with the proposed
method and POTDC [1] versus SNR fbr= 2.

betweenk!” user of thel** operator and the relay is repre-
sented byl ;. For simplicity and without loss of generality, )
we assume that, ; = d; andds; = ds (With d; + do = 1). Fig. 3: The average run-time (s) versus the number of anten-
Therefore, the near-far (N/F) ratio is defineddgd,. The NasMr for the case of. = 2.

Rayleigh flat fading channel vectofhy, ; } are reciprocal and
spatially uncorrelated and the path loss exponent is assume . C . .
to be3 in all simulations. All the results are presented consid-gn Ge:tthlgllAs'\\/l/v grr‘u;agg%még'gi“gml?i;: 22 grbdslgig deE\aE\t/vtI:\Z
ering 100 realizations of the associated fading channels. We roposed method exhibits a IoW computational cost compared
begin by investigating the effect of the SNR on the sum-rat o its rival (note that the values for POTDC correspond(o

in a symmetric scenario (i.el; = ds). The sum-rate values . . . .
associated with the proposed method as well as the POTD'E?rat'OnS)' The presented computational results iléstthe

method of [1] (which is dealt with via CVX toolbox [10]) ver- 2PPlicability of the proposed method to currently avaabl
sus SNR are shown in Fig. 1 fdfr = 4 and Mg = 8 with prototypes of massive MIMO (e.g. Argos [11]).

L = 2. As expected, the sum-rate is increasing with respect

to SNR. Furthermore, the results of the proposed method are 5. CONCLUSION

slightly better than those of the method in [1] because the pr

posed method circumvents the synthesis loss associated withe problem of relay beamformer design for sum-rate max-
POTDC. Next, we study the effect of the N/F ratio. Fig. 2imization in massive MIMO AF relay networks was con-
plots the sum-rate values versus different N/F ratios{2).  sidered. An iterative method based on the minorization-
The proposed method achieves better results in the whole imaximization (MaMi) techniqgue was devised to deal with
terval of the N/F ratio. Moreover, Fig. 1 and Fig. 2 showthe design problem. The proposed method provides quality
that a larger number of antenna$y leads to a larger sum- solutions to the design problem for an arbitrary number of
rate value of the network—as expected. The computationaperatord.. Numerical examples confirmed the effectiveness
times of both methods are investigated in Fig. 3, which plot®f the proposed method when compared to other methods in
the average computational times by considetiiguns of the  terms of the solution quality and the computational efficien
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