
DETECTION OF PILOT CONTAMINATION ATTACK IN T.D.D./S.D.M.A. SYSTEMS

Jitendra K. Tugnait

Department of Electrical & Computer Engineering
Auburn University, Auburn, AL 36849, USA

tugnajk@eng.auburn.edu

ABSTRACT

In a time-division duplex (TDD) multiple antenna system,
the channel state information (CSI) can be estimated using
reverse training. A pilot contamination attack occurs when
during the training phase, an adversary also sends identical
training (pilot) signal as that of the legitimate receiver. This
contaminates channel estimation and alters the legitimate pre-
coder design, facilitating eavesdropping. We investigate su-
perimposing a random sequence on the training sequence at
the legitimate receivers and then using source enumeration
methods to detect pilot contamination attack. The proposed
method extends an existing TDD/TDMA uplink approach to
TDD/SDMA uplink scenario. The detection performance is
illustrated via simulations.

Index Terms— Physical layer security, pilot contamina-
tion attack, active eavesdropping, source enumeration.

1. INTRODUCTION

Broadcast nature of wireless networks makes them vulnera-
ble to malicious attacks aimed at disrupting their operation,
such as pilot contamination attacks [1], [2], where the eaves-
dropper actively disrupts the channel state information (CSI)
training process so as to neutralize beamformer/precoder de-
sign. In physical layer security methods, full or partial knowl-
edge of the CSI of the legitimate system is required [3]. This
knowledge is typically acquired by channel estimation during
the training phase before the information signal transmission.
In a time-division duplex (TDD) multiple antenna system, the
CSI can be acquired using reverse training.

Consider a TDD system with SDMA (space-division mul-
tiple access) uplink and downlink, with a base station Alice,
equipped with N r antennas, and several single antenna users
(to be called Bobs: Bob 1, Bob 2, · · · ). Alice designs its trans-
mit beamformer/precoder based upon its channel to Bobs for
improved performance. For a TDD system, the downlink and
uplink channels can be assumed to be reciprocal so that Alice
can learn its CSI to Bobs via Bobs’ training of Alice. There-
fore, each Bob sends its unique pilot (training) signal to Alice
during the training phase of the slotted TDD system. If a pub-
licly known protocol is used where the pilot sequences are
publicly known, a malicious single-antenna terminal (eaves-
dropper) Eve can transmit the same pilot sequence during the
training phase, thereby biasing the CSI estimated by Alice.

In turn, the precoder designed on this basis could lead to a
significant information leakage to Eve.
Relation to Prior Work: This issue of pilot contamina-

tion attack was first noted in [1] who investigates enhancing
eavesdropper’s performance. A diverse set of approaches are
discussed in [2, 4, 5] for detection of the attack assuming a
TDMA (time-division multiple access) uplink requiring sep-
arate time slots for each usr Bob. In this paper we consider
SDMA uplink to allow for simultaneous transmission of train-
ing from Bobs.
Contributions: We extend the TDD/TDMA uplink ap-

proach of [5] to TDD/SDMA uplink scenario. The training
sequences of various legitimate users are selected to be or-
thogonal. The proposed approach is analyzed and illustrated
via simulations.
Notation: Superscripts (.)∗, (.)⊤ and (.)H represent com-

plex conjugate, transpose and complex conjugate transpose
(Hermitian) operation, respectively, on a vector/matrix. The
notation E{.} denotes the expectation operation, C the set of
complex numbers, IM anM ×M identity matrix, 1{A} is the
indicator function. The notation x ∼ Nc(m,Σ) denotes a ran-
dom vector x that is circularly symmetric complex Gaussian
with mean m and covariance Σ.

2. SYSTEMMODEL

We consider KB single antenna legitimate users (“Bobs”),
with st,i(n), 1 ≤ n ≤ T , denoting the scalar training se-
quence of the ith user, of length T time samples. Suppose
there are KE ≤ KB potential single antenna eavesdroppers.
An eavesdropper will try to spoof a legitimate user by trans-
mitting the user’s training sequence; that is, in our model,
each potential eavesdropper is associated with a legitimate
user in that the former uses the latter’s training signal. Con-
sider a flat Rayleigh fading environment with Bob i-to-Alice
channel denoted as hBi

∈ C
Nr×1 and Eve i-to-Alice channel

denoted as hEi
∈ C

Nr×1, where hBi
∼ Nc(0, σ

2
Bi
INr

) and

hEi
∼ Nc(0, σ

2
Ei
INr

) represent fading. Let PBi
and PEi

de-
note the average training power allocated by Bob i and Eve
i, respectively. In the absence of any transmission from any
Eve, the received signal at Alice during the training phase is
given by

y(n) =

KB∑

i=1

√
PBi

hBi
st,i(n) + v(n) (1)
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where additive noise v(n) ∼ Nc(0, σ
2
vINr

) and the training
sequences are periodic with period P and orthogonal satisfy-
ing

P−1
P∑

n=1

st,i(n)s
∗
t,j(n) = δi,j =

{
1 if i = j
0 if i 6= j

(2)

Let E ⊆ [1,KB ] denote the set of active eavesdroppers.
When Eves also transmit (Eve’s pilot contamination attack),
the received signal at Alice during the training phase is

y(n) =

KB∑

i=1

(√
PBi

hBi
+

√
PEi

hEi
1{i∈E}

)
st,i(n) + v(n)

=

KB∑

i=1

h̃ist,i(n) + v(n) (3)

where h̃i =
√

PBi
hBi

+
√
PEi

hEi
1{i∈E}. In case of Eve’s

attack, based on (3), Alice would estimate h̃i as Bob i-to-
Alice channel, instead of

√
PBi

hBi
based on (1).

The problem addressed in this paper is: how to detect
Eves’ attack based only on the knowledge of st,i(n) and y(n).

3. SELF-CONTAMINATION AT BOBS

Our proposed solution to the detection problem is to perform
source enumeration using the information theoretic minimum
description length (MDL) algorithm [6, 7, 8]. We propose to
allocate a fraction β of the training power PBi

at Bob i to a
scalar random sequence {sBi

(n)} to be transmitted by Bob
along with (superimposed on) st,i(n); it can be the informa-
tion sequence of Bob i. We assume that {sBi

(n)}s are mu-
tually independent random sequences, zero-mean, i.i.d., nor-

malized to have T−1
∑T

n=1 |sBi
(n)|2 = 1, finite alphabet:

BPSK or QPSK, e.g. Thus, instead of
√
PBi

st,i(n), Bob i
transmits (0 ≤ β < 1, n = 1, 2, · · · , T )

s̃Bi
(n) =

√
PBi

(1− β) st,i(n) +
√
PBi

β sBi
(n). (4)

The sequences {sBi
(n)} are unknown to Alice (and to Eves)

and it can not be replicated in advance as they are random se-
quences generated at Bobs. However, Alice knows that such
{sBi

(n)} is to be expected in y(n).
Now we have the following two hypotheses in a binary

statistical hypothesis testing problem framework, for the re-
ceived signal at Alice with H0 denoting the null hypothesis
that there is no attack, and H1 denoting the alternative that at
least one of the eavesdroppers attack is present:

H0 : y(n) =
∑KB

i=1 hBi
s̃Bi

(n) + v(n)

H1 : y(n) =
∑KB

i=1

[
hBi

s̃Bi
(n)

+
√

PEi
hEi

st,i(n)1{i∈E}

]
+ v(n).

(5)

We will model the sequences {st,i(n)} and {sB,i(n)} as de-
terministic signals for source enumeration discussed later [7].

Then under H0, y(n) ∼ Nc(
∑KB

i=1 hBi
s̃Bi

(n), σ2
vINr

), and

underH1, y(n) ∼ Nc(
∑KB

i=1

[
hBi

s̃Bi
(n)+

√
PEi

hEi
st,i(n)

1{i∈E}

]
, σ2

vINr
).

Define the correlation matrix of measurements as (ℓ =
0, 1)

Ry,ℓ = T−1
T∑

n=1

E
{
y(n)yH(n)

∣∣Hℓ

}
(6)

and the correlation matrix of source signals as (ℓ = 0, 1)

Rs,ℓ = T−1
T∑

n=1

E
{
[y(n)− v(n)][y(n)− v(n)]H

∣∣Hℓ

}
.

(7)
Then we have

Ry,ℓ = Rs,ℓ + σ2
vINr

, ℓ = 0, 1. (8)

In addition to (2), the following two relations hold w.p.1 and
in mean-square (m.s.) for “large” T :

lim
T→∞

T−1
T∑

n=1

sBi
(n)s∗Bj

(n) = δi,j , (9)

lim
T→∞

T−1
T∑

n=1

sBi
(n)s∗t,j(n) = 0. (10)

Define

H0 =
[
hB1

hB2
· · · hBKB

]
∈ C

Nr×KB (11)

s̃B(n) =
[
s̃B1

(n) s̃B2
(n) · · · s̃BKB

(n)
]⊤

∈ C
KB×1 (12)

Then underH0, y(n) = H0s̃B(n) + v(n) and

Rs,0 = H0D0H
H
0 , D0 ∈ C

KB×KB , (13)

where, using (2), (9) and (10), for “large” T

[
D0

]
ij
= T−1

T∑

n=1

s̃Bi
(n)s̃∗Bj

(n) ≈
√
PBi

PBj
δi,j . (14)

Thus, rank(Rs,0) = KB w.p.1 forNr ≥ KB since rank(H0) =
KB w.p.1.

Now consider the hypothesis H1. Suppose that |E| =
KE= number of eavesdroppers. Without loss of gener-
ality, let us reindex the user identities such that first KE

users are targeted by the eavesdroppers and the remain-
ing KB − KE ≥ 0 are not. That is, under H1, y(n) =∑KE

i=1

(
hBi

s̃Bi
(n) +

√
PEi

hEi
st,i(n)

)

+
∑KB

i=KE+1 hBi
s̃Bi

(n) + v(n). Define

s̃(n) =
[
st,1(n) sB1

(n) · · · st,KE
(n) sBKE

(n) · · ·

s̃BKE+1
(n) · · · s̃BKB

(n)
]⊤

∈ C
(KE+KB)×1 (15)

gi =





√
PBℓ

(1− β)hBℓ

+
√
PEℓ

hEℓ
, i = 2ℓ− 1, ℓ ∈ [KE ]√

PBℓ
βhBℓ

i = 2ℓ, ℓ ∈ [KE ]
hBℓ

i > 2KE , ℓ = i− 2KE

(16)
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H1 =
[
g1 g2 · · · gKE+KB

]
∈ C

Nr×(KE+KB). (17)

Then underH1, we have

Rs,1 = H1

(
T−1

T∑

n=1

s(n)sH(n)
)
HH

1 = H1D1H
H
1 (18)

where

[
D1

]
ij
≈





0 i 6= j
1 i = j ≤ 2KE

PBi
i = j > 2KE

(19)

Therefore, rank(Rs,1) = KE+KB w.p.1 forNr ≥ KE+KB

since rank(H1) = KE +KB w.p.1.
Thus, introduction of {sBi

(n)} by KB legitimate users
Bobs (as opposed to pilot contamination by Eve) leads to sig-
nal subspace of rank KE + KB in the presence of Eves’ at-
tack. If β = 0, then rank(Rs,1) = KB . Let the ordered
(in decreasing magnitude) nonzero eigenvalues of Rs,0 and
Rs,1 be denoted as λ1,0 ≥ λ2,0 ≥ · · · ≥ λKB ,0 > 0 and
λ1,1 ≥ λ2,1 ≥ · · · ≥ λKB+KE ,1 > 0, respectively. Then the
Nr eigenvalues of Ry,i are

(λ1,0 + σ2
v , · · · , λKB ,0 + σ2

v , σ
2
v , · · · , σ

2
v) for i = 0 (20)

(λ1,1 + σ2
v , · · · , λKB+KE ,1 + σ2

v , · · · , σ
2
v) for i = 1. (21)

One can distinguish between the two hypotheses using the
MDL criterion [6, 7, 8] for estimation of the signal subspace
dimension d (i.e., rank d) provided that Nr > d (number of
sensors greater than number of sources). Since d = KB or
KB + KE , we need Nr ≥ 2(KB + KE) + 1 for the MDL
estimator of d [6, 7, 8]. The MDL estimator is discussed next.

3.1. MDL Source Enumeration for Attack Detection

Define the sample correlation matrix of T observations as

R̂y = T−1
T∑

n=1

y(n)yH(n). (22)

Let the ordered eigenvalues of R̂y be denoted by ℓ1 ≥ ℓ2 ≥
· · · ≥ ℓNr

. The MDL estimator of the signal subspace dimen-
sion d is given by [6, 7, 8]

d̂ = arg min
1≤d≤Nr−1

MDL(d) (23)

where

MDL(d) =−
Nr∑

i=d+1

ln(ℓi) + (Nr − d) ln

(
1

Nr − d

Nr∑

i=d+1

ℓi

)

+
d(2Nr − d) ln(T )

2T
. (24)

We reformulate the hypotheses (5) as

H0 : rank(Rs,0) = d = KB

H1 : rank(Rs,1) = d > KB
(25)

but instead of solving it in the traditional detection theoretic
sense (maximize probability of detection subject to an upper-
bound on the probability of false alarm), we use the MDL
method to determine d, the signal subspace dimension. Fol-

lowing (25), if d̂ = KB , declare no attack, and if d̂ > KB , we
have a pilot contamination attack. The MDLmethod needs no
threshold calculation.

4. ITERATIVE CHANNEL ESTIMATION

If the MDL method indicates absence of any attack, Alice
proceeds to initially estimate the channel using (5) underH0,
knowledge of {st,i(n)}, i = 1, 2, · · · ,KB , and the least-
squares method. DefineKB-column vectors

st(n) =
√

1− β
[√

PB1
st,1(n) · · ·

√
PBKB

st,KB
(n)

]⊤

(26)

sB(n) =
√
β
[√

PB1
sB1

(n) · · ·
√

PBKB
sBKB

(n)
]⊤

(27)

With st(n) as the vector training sequence, we estimate H0

(see (11)) to minimize 1
T

∑T

n=1 ‖y(n)−H0st(n)‖
2 resulting

in the estimate

Ĥ0 =

[
1

T

T∑

n=1

y(n)sHt (n)

][
1

T

T∑

n=1

st(n)s
H
t (n)

]−1

≈

[
1

(1− β)T

T∑

n=1

y(n)sHt (n)

]
Γ−1
PB

(28)

where ΓPB
= diag{PB1

, · · · , PBKB
}, a KB ×KB diagonal

matrix. This approach treats {sB(n} as interference which
may lead to poor estimate for larger values of β. An obvious
solution is to perform iterative channel estimation via a linear
minimum mean-square error (MMSE) equalizer to estimate
and decode (quantize) self-contamination sB(n) and then
use the decoded sB(n) in conjunction with st(n) as pseudo-
training. The linear MMSE equalizer Heq ∈ C

KB×Nr to

estimate s̃B(n) (see (12)) as ˆ̃sB(n) is given by (after replac-

ing H0 with Ĥ0)

Heq = ΓPB
Ĥ

H

0

[
Ĥ0D0Ĥ

H

0 + σ2
vINr

]−1

. (29)

Then we have ˆ̃sB(n) = Heqy(n). Removing the known con-

tribution of st(n), set šB(n) = ˆ̃sB(n)− st(n) and then quan-
tize (βΓPB

)−0.5šB(n) (and premultiply with (βΓPB
)0.5) to

get the finite-alphabet decoded estimate ŝBq(n) of sB(n).
The pseudo-training sequence {s̃Bq(n), n = 1, 2, · · ·T} is
then given by s̃Bq(n) = st(n) + ŝBq(n). Using this pseudo-
training we re-do the channel estimate as

Ĥ0 =

[
1

T

T∑

n=1

y(n)s̃HBq(n)

][
1

T

T∑

n=1

s̃Bq(n)s̃
H
Bq(n)

]−1

(30)
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Information Sequence Detection: If the sequences
{sBi

(n)} are the information sequences of legitimate users
i = 1, 2, · · · ,KB , then we use the channel estimate (30) back
in (29) to design an updated equalizer and then use it to get
the finite-alphabet decoded estimate of {sBi

(n)}.
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Fig. 1: Probability of attack detection as a function of Eve’s
power PE (=PEj

∀j) relative to noise power σ2
v when Bob’s

power is fixed at PBi
/σ2

v = 10dB ∀i: KB=6=# of legitimate
users, KE=2= # of eavesdroppers, β=0.9 implying 10% of
power in T symbols is for training and 90% for data.
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Fig. 2: Channel normalized MSE (‖Ĥ0 −H0‖
2
F /‖H0‖

2
F , un-

der the conditions of Fig. 1, where H0 as in (11), Ĥ0 as in
(30)). Channel estimation is performed even if eavesdroppers
are detected. β=0.9 implying 10% of power in T symbols is
for training and 90% for data.

5. SIMULATION EXAMPLES

We consider hBi
∼ Nc(0, INr

), hEi
∼ Nc(0, INr

), ∀i, noise
power σ2

v , KB=6= number of legitimate users, KE=2= num-
ber of eavesdroppers, training power budget PBi

at Bob i is
such that PBi

/σ2
v = 10dB ∀i, training power budget PEj

at

Eve j is such that PEj
/σ2

v varies from −30dB through 20dB
and is the same ∀j, and fractional allocation β of training
power at Bob i to random sequence sBi

(n) is 0.9 . Bobs

and Eves have single antennas while Alice has N r = 10, 20
or 40 antennas. The training sequences are selected as peri-
odic extensions of orthogonal (binary) Hadamard sequences
of length P = 25 = 32 and the random sequences {sBi

(n)}
were i.i.d. QPSK.

Fig. 1 shows our detection probability Pd results averaged
over 5000 runs under pilot contamination attack for various
parameter choices when PBi

/σ2
v = 10dB ∀i. The perfor-

mance improves with increasing training sequence length T ,
number of receive antennas Nr and Eve’s power PE . The
false-alarm rate Pfa was 0.0098 for Nr = 10, T = 32, and
< 0.001 for all other parameter choices shown in Fig. 1. It is
seen that the algorithm can detect “weak” eavesdroppers.
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Fig. 3: Bit error rate averaged over all users, for QPSK super-
imposed information sequences, under the conditions of Fig.
2. β=0.9 implying 10% of power in T symbols is for training
and 90% for data.

Channel estimation results in terms of normalized MSE
‖Ĥ0 − H0‖

2
F /‖H0‖

2
F , averaged over 5000 runs, are shown

in Fig. 2 for the case of active attack (all parameters as for
Fig. 1), where we used the iterative estimator (30). The per-
formance improves with increasing superimposed training se-
quence length T and decreasing Eve’s power PE . From Figs.
1 and 2 we see that as eavesdropper’s transmit power de-
creases, it is harder to detect its presence but correspond-
ingly, channel MSE improves. The bit error rate (BER) re-
sults are shown in Fig. 3, averaged over 5000 runs, when in-
formation sequences are used as superimposed random self-
contamination sequences. All other all parameters as for Fig.
2. The performance improves with increasing training se-
quence length T , increasing Nr, and decreasing Eve’s power
PE .

6. CONCLUSIONS

We presented a novel approach to detection of pilot con-
tamination attack in TDD/SDMA systems by extending the
TDD/TDMA uplink approach of [5]. The proposed method
was illustrated via simulations. The question of what alterna-
tive strategy or protocol should be employed once an attack
is detected, was not addressed in this paper.
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