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ABSTRACT

This paper addresses the pilot and data power allocation is-
sue in time division duplexing (TDD) massive multi-user
multiple-input multiple-output (MU-MIMO) systems. By us-
ing minimum mean square error (MMSE) channel estimation
along with a maximum-ratio combining (MRC) detector for
the uplink transmission and a maximum-ratio transmission
(MRT) precoder for the downlink transmission, a novel pilot
and data power allocation scheme is proposed to minimize
the total uplink and downlink transmit power under per-user
signal to interference-plus-noise ratio (SINR) and power con-
sumption constraints. The main contribution of this paper
lies in formulating the original energy efficient power alloca-
tion problem and converting such a complicated optimization
problem to a geometric programming one. Computer simu-
lation shows that the proposed scheme can save up to 78%
of the total power as compared to the equal power allocation
among all the mobile users.

Index Terms— massive MIMO, energy efficiency, QoS
constraints, green communications

1. INTRODUCTION

As green communication has become a significant trend of fu-
ture wireless communication design and development, it is of
great importance to design the energy efficient (EE) power al-
location schemes for MU-MIMO systems [1]-[3]. One of the
major focuses of EE power control in green communication is
to study the power consumption trade-off between pilot and
data signals [4]-[10]. In most of the previous works on en-
ergy efficient MIMO systems, all users are assumed to have
the same pilot power or data power [4]-[8]. Such an equal
power allocation strategy may cause “squaring effect” in low
power regime [11]. On the other hand, the schemes presented
in [4]-[10] considered the EE power control for the uplink
and downlink transmissions separately, which has limited the
practical use of MIMO systems. On contrary to most previous
works, in this paper we consider a more practical scenario,
where different users have different transmit pilot and data
powers. Also we address the joint power control problem for
both the uplink and downlink transmissions in one optimiza-
tion problem, so as to achieve a minimum sum power under
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both per-user QoS and per-user power budget constraints.

2. SYSTEM AND DATA MODEL

Consider a time-division duplex (TDD) single-cell MU-
MIMO system which consists of an M-antenna base station
(BS) serving K (K<M) single-antenna mobiles. Let G denote
the M xK channel matrix between the K users and the BS,
with its element g, 2 [G]:mi representing the channel coef-
ficient between the k-th user and the m-th antenna of the BS.
By assuming flat fading channel [14], we have G = HD'/2,

where the element h,,,; = [H],1 represents the small-scale
coefficients and is modeled as independent and identically
distributed (i.i.d.) complex Gaussian random variables (RVs).
The K xK diagonal matrix D = diag{f1, 52, - .., Bk } mod-
els the large-scale fading that incorporates path-loss and shad-
owing effect which are assumed to be constant and known a
priori.

As usual, we assume a block fading structure where the
channel gains remain constant in each coherence time period.
As discussed in [2][12] and [13], in pilot-assisted channel es-
timation, when large antenna arrays are employed at BS, it is
difficult to estimate the downlink CSI at mobiles, since in this
case the number of pilot symbols must be larger than or equal
to the number of BS antennas. On the contrary, the uplink
CSI is easy to estimate at BS as the number of uplink pilot
symbols depends on the number of active mobiles rather than
that of BS antennas. Under the assumption of ideal channel
reciprocity, however, we can estimate the uplink CSI at BS
and then use such estimated uplink CSI for both uplink and
downlink data transmission.

Fig. 1 shows the transmission protocol of the pilot sym-
bols and the uplink and downlink data symbols under the
TDD operation mode, where the BS acquires downlink CSI
through uplink pilot training. In the first 7 (+ > K) slots
of a coherent time interval, all users synchronously transmit
uplink pilot signal from mobiles to BS for the purpose of CSI
estimation which is required to detect the uplink data and gen-
erate precoding matrix for downlink data transmission. After
uplink pilot transmission, 73 symbols are used for uplink data
transmission followed by 75 symbols for downlink data trans-
mission. All transmit data signals are assumed to be stochas-
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tic in nature with zero means. It is worth mentioning that the
silent slots used for BS processing as discussed in [2][13] are
not included in Fig. 1.

Coherence Period

. . Uplink Data . ..
Uplink Pilot plni Downlink Data Transmission
Transmission
7 Symbols T, Symbols T, Symbols

Fig. 1. Frame structure of TDD system

2.1. Channel Estimation

By using the MMSE channel estimation as discussed in [14],
the estimated channel matrix can be expressed as

G =Y, SH(D" +5,501)" m
where Sp denotes the K x N, transmit pilot symbol matrix
and Yp is the M x N, received pilot signal matrix. In this
paper, an orthogonal pilot is used [5], which means SpSH =
Tdiag(Pp.1,Dp.2s - -, Pp,ic ), Where pp i (k = 1,2,...,K)
represents the pilot power of the k-th user.

From the property of MMSE channel estimation [14],
both the estimated channel matrix G and the estimation error
matrix AG = G — G have i.i.d. Gaussian RVs with zero
mean. Let M x I vectors §i and Ag;. denote the k-the column
of G and that of AG, respectively. The elements of G are
independent of that of AG and the variance of the elements
of §;. and Agy, can be expressed as

2
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2.2. Uplink Data Transmission

By employing the maximum-ratio combining (MRC) detector
at the BS, the received uplink SINR of the user k after apply-
ing the M xK receive beamforming matrix G can be repre-
sented as

Pd k|§£§k‘2

Ve =

1275 pai|di ]’ + Zpdglgk Agil” + g
=1,

(3)
where pg 1 (kK = 1,2,..., K) represents the uplink data trans-
mit power for the k-th user. In this paper, the normalized
white Gaussian noise with zero mean and unit variance is as-
sumed .

2.3. Downlink Data Transmission

For the downlink transmission, the BS uses a normalized pre-
coding vector gy /||gx||, and the received downlink SINR of

the user k is then given by

~ ~ 2
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where pgi (kK = 1,2,...,
power for the k-th user.

K) represents the downlink data

3. LOWER BOUNDS OF AVERAGE SINR

3.1. Uplink Transmission

Proposition I: By using the MRC receiver at BS, a lower
bound of the uplink average SINR of user k under the MMSE
channel estimation is given by

Alﬂiﬂ'pp,kpd~k
1+8,7TPp K
K By (5)
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Proof: From (3), the uplink average SINR of user k can be
written as
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where the vectors g; and Ag; are spherically symmetric as
their elements consist of i.i.d. zero-mean Gaussian RVs. Fur-
ther, from the spherically symmetric distribution [15, chapter
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4], S and gﬁg "IL are Gaussian RVs with zero mean and
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variances o7 and £2, respectively. Both |Hk” T and gﬁg ﬁ’ L are

independent of || gy ||, which means the numerator in (6) is in-
dependent of the three terms in the denominator. Noting that
the function 1/x is convex when z is positive and the Jensens
inequality, (6) can be further expressed as
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The term ||§x|| in (7) can be treated as a 1x 1 central complex
Wishart matrix with M degrees of freedom. According to the
property of central Wishart matrix [16], we can then get
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Substituting (8) into (7), we obtain the result as in (5).
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3.2. Downlink Transmission

Proposition 2: Assuming that an MRT precoder is employed
at BS, a lower bound of the downlink average SINR of user k
can be expressed as

- MRC,dn
E{Ye} = %
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The proof is similar to the uplink transmission case and is
omitted here due to the space limit.

4. ENERGY-EFFICIENT PILOT AND DATA POWER
ALLOCATION

In this section, we develop an algorithm for power alloca-
tion between pilot and data symbols to minimize the total
uplink and downlink transmit power while guaranteeing per-
user QoS and power consumption constraints.

Let P be the total power for one transmission frame.
In order to find the best power-consumption trade-off be-
tween the uplink and downlink transmission, a weighted
sum-power minimization is considered with a positive weight

[pp,17pp,27 cee 7pp,K]’
A A -

Pd = [Pa1,Pd2;- - Pa,x] and g = [Pa1,Pd,2, - - - Pd,x]s

the power allocation problem which minimizes the total trans-

mit power based on the obtained average SINR lower bounds

for MRC receiver and MRT precoder can be formulated as

parameter {. By denoting p,
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Here, the cost function is the weighted sum-power accounting
for the pilot power consumption and the uplink and down-
link data transmission. The first and second constraints repre-
sent the uplink and downlink QoS requirement with per-user
SINR targets +; and ~ys, respectively. The third and fourth
constraints P; and P, are the power constraint of each mobile
user and that of BS, respectively.

It is easy to see that the optimization problem (10) is non-
convex since the first and second constraint functions are non-
convex. As such, it is very difficult to solve it directly. In or-
der to simplify the optimization problem (10), we introduce a

new set of variables

B
1+ BkTpp’k

>

ar (11)
along with the constraints 0 <« < [. By substituting (11)
into (10) and after some operations, the second constraint in
(10) can be expressed as
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By replacing the term ﬁ (pd k)

K
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with a new variable b, we have constraint 67 (pa, k)

5k o (Pa,k)~ 1 < by. Then, the minimization problem in

(10) can be rewritten as
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Now, the optimization problem in (13) is a standard ge-
ometric programming (GP) problem, since its cost function
and constraints are all posynomials [17][18]. Then, this GP
problem can be easily solved by using some standard numeri-
cal optimization packages, for example ConVeX (CVX) [19].
It is worth mentioning that the above GP problem can be con-
verted to a convex optimization problem through a logarith-
mic change of the variables and a logarithmic transformation
of the cost and constraint functions as discussed in [17][18].

5. SIMULATION RESULTS

In this section, numerical simulations are carried out by fol-
lowing the parameter setting in [5]. We consider a single
cell MU-MIMO system with K = 4 users randomly located
within a circular area with a radius of 1000m. We choose the
smallest amount of training 7 = K. The symbols for uplink
and downlink data transmission are assumed to be the same
in one coherent time interval as 77 = T5 = 96.The weight
parameter ( is assumed to be one. The pilot and data powers
are normalized according to white Gaussian noise power.
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In Fig. 2, we first give the numerical results for the origi-
nal SINR and the derived lower bounds for comparison. Here,
we have assumed that equal pilot and data power allocation
among all users is applied with p,, ;, = pgx = pa, for any
k € K asin [5]. It is clearly seen that the derived lower
bounds are tight in all cases despite the number of BS anten-
nas.
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Fig. 2. Average SINR versus the number of BS antennas

Fig. 3 shows the uplink and downlink power for all the
users versus the number of BS antennas with v; = vy, = 5dB
and v; = 72 = 15dB, respectively. The uplink power in-
cludes the power of both pilot and uplink data signal. All the
powers are normalized according to the noise power. It is ob-
vious that as M grows, both uplink and downlink powers de-
crease, showing that the use of massive MU-MIMO can save
a great deal of transmit power. Note that when the required
SINR is chosen as 15dB, there is no solution for M < 70
because of the significant crosstalk interference.
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Fig. 3. Pilot-data power allocation versus number of BS an-
tennas

In order to demonstrate the advantage of our proposed
power allocation algorithm as compared with a simple equal
pilot-data power allocation where the pilot and data signal
have the same power p,, for all the users as in [5], we define
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Fig. 4. Percentage of power saving versus target SINRs

the percentage of the total power saving as

K

K(r+ Ty +(To)pu — Y- (Tppk + T1pak + CT2Pak)
=1

K(t+T1 4 ¢(T2)py

14
where P, can be easily found by setting p, , = pa,x = Pa,kx =
Py, in the previous optimization problem (14). From Fig. 4,
it can be seen that about 75% to 78% total power has been
saved by our method in low target SINR region, depending on
the number of BS antennas. The percentage of power saving
decreases as the required per-user SINR increases. It should
be mentioned that the benefit of deploying a large number
of BS antennas tends to become marginal, since the ultimate
SINR performance is limited by the interference and channel
estimation error.

6. CONCLUSION

In this paper, we have proposed a pilot-data power alloca-
tion for EE communications in single-cell MU-MIMO sys-
tems with an objective of minimizing the total uplink and
downlink transmit power. We have first analysed the uplink
and downlink SINRs and then derived their lower bounds,
based on which an EE power allocation optimization prob-
lem is formulated under the per-user SINR and power con-
sumption constraints. The non-convex optimization problem
is then converted to a standard GP problem to facilitate its so-
lution. Numerical simulation results have confirmed the ad-
vantage of the proposed power allocation scheme.
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