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ABSTRACT
This paper develops low-complexity design techniques for ro-

bust linear precoders suitable for various multi-cell multiple-input
single-output (MISO) downlink systems. The goal is to satisfy pre-
specified SINR requirements for users in multiple cells under some
base station power constraints, in the absence of perfect channel
state information (CSI). First, we consider the case of full cooper-
ation between base stations and derive a simple iterative algorithm
that achieves the required SINRs with high probability despite the
presence of channel uncertainties. Then we consider the case of dis-
tributed coordination between base stations and develop a simple
iterative algorithm that requires only very limited communication
among the base stations. Our simulation results demonstrate that
substantial robustness can be obtained at a low computational cost.

Index Terms— Multi-cell, beamforming, MISO, Robust.

1. INTRODUCTION

Managing the interference among clusters of cells has the potential
to provide significant performance gains over wireless networks that
avoid interference between cells [1, 2]. One taxonomy of interfer-
ence management schemes classifies them as being centralized or
distributed, depending on where the design decisions are made, and
as being cooperative or coordinating. In cooperative schemes mul-
tiple base stations (BSs) work together to transmit the same infor-
mation to a receiver, whereas in coordinating schemes each receiver
is assigned to a single BS, but the design of the transmissions from
each BS is coordinated with that of the other BSs.

Among the many scenarios that could benefit from cooperation
or coordination, we will focus on the multiple-input single-output
(MISO) downlink case in which a cluster of BSs seek to cooperate
or coordinate in the transmission of messages to multiple receivers
each with a single antenna. We will focus on linear transmission
schemes and hence the design variables are the shape of the beam
transmitted to each receiver and the power allocated to that beam.
Based on the assumption that sufficiently accurate channel state in-
formation (CSI) can be made available at the design nodes, a number
of techniques for multi-cell downlink beamforming have been devel-
oped; e.g., [2–7]. More recently, efforts have been made to mitigate
the sensitivity of those techniques to the uncertainties in the CSI
that inevitably arise from the estimation and transmission of CSI;
e.g., [8–14]. However, many such techniques require the solution of
optimization problems that incur significantly greater computational
cost than that of the original designs for the perfect CSI case (some
of which are, themselves, quite computationally costly).

In this paper, we will develop low-complexity iterative algo-
rithms for the beamforming directions and the power loading in both
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a centrally-design cooperative mutli-cell MISO downlink, and for
a coordinated multi-cell MISO downlink that is designed in a dis-
tributed manner. Using insights from recent work on the isolated
single-cell MISO downlink [15–17], we develop designs that pro-
vide substantial robustness to uncertainties and can be obtained us-
ing simple iterative algorithms. In our simulation experiments, these
straightforward designs provide significantly lower outage rates than
existing designs.

2. SYSTEM MODEL

The system that we consider consists of a total of K-users each with
a single antenna served by a cluster of B BSs. User k is served by
a subset of the BSs, Bk, where Bk consists of only one BS index in
the case of distributed precoding and contains all the BS indices in
the case of full cooperation. We assume that each BS is equipped
with Nt antennas and is provided with an imperfect version of the
CSI of the users. We use the notation hjk ∈ CNt to denote the chan-
nel between the BS j and user k. we let wj

k denote the designed
precoding vector for transmission from BS j to user k, and let sk
denote the intended normalized data symbol for that user. To unify
the notations for the full cooperation and distributed cases, we de-
fine hk = [h1

k
T
,h2

k
T
, · · · ,hBk

T
]T as the stacking of all the channel

vectors to user k, and we define wk analogously. We also let
√
βk

denote the Euclidean norm of wk and uk denote its normalized di-
rection; i.e., wk =

√
βkuk. With that notation, we can write the

received signal of user k in the following simplified form:

yk = hHk wksk +
∑
i 6=k hHk wisi + nk, (1)

where nk is the zero mean circular Gaussian noise of variance σ2
k

at user k. We will translate each user’s quality-of-service (QoS)
constraint into an SINR requirement SINRk ≥ γk. By defining
Wk = wkw

H
k , we can write the SINR expression for user k as

SINRk =
hHk Wkhk

hHk (
∑
i 6=k Wi)hk + σ2

k

. (2)

For a BS or a cluster management centre to calculate the SINR
at each user, it needs to know the actual channel vectors {hk}. How-
ever, in practice only an estimate of those vectors will be avail-
able. In this paper we will model the uncertainty additively; i.e.,
hjk = hjek + ejk, and with ejk being an independent zero-mean cir-
cular Gaussian random variable of covariance (σjek )

2I. Among a
number of scenarios, this model is appropriate in certain time di-
vision duplexing (TDD) systems in which channels are estimated
during the uplink training phase.

In the following sections, we will first review an existing ap-
proach to precoding for intra-cell interference mitigation in an iso-
lated cell. We will then show how that approach can be integrated
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with inter-cell interference mitigation techniques that capture differ-
ent levels of coordinations among the BSs.

3. OFFSET-MAXIMIZATION FOR THE SINGLE CELL
CASE

In the case of the downlink of an isolated cell, the task of satisfying
the users’ QoS constraints involves managing the interference im-
posed on one user due to simultaneous transmissions to other users
in the same cell (i.e., managing intracell interference), and doing so
in the presence of uncertainty in the BS’s estimates of the channels to
the users. Among many possible approaches to this problem, includ-
ing [18–21], we will review the offset maximization approach to ro-
bust precoding, which was initially developed in [15], was extended
to the case of per-antenna power constraints in [16] and enhanced
with an alternative power loading in [17]. A key advantage of that
approach and its enhanced power loading is its low computational
cost.

For the single cell case, the offset maximization approach is
based on the observation that under our additive model for the un-
certainty in the CSI, the constraint SINRk > γk can be rewritten
as

hHekQkhek − σ
2
k + hHekQkek + eHk Qkhek + eHk Qkek ≥ 0. (3)

where Qk = Wk/γk −
∑
j 6=k Wj . This expression suggests that

if we were to maximize the deterministic “offset” term in (3), we
would obtain robustness against the terms that involve the error in the
CSI. If we do so, with a total power constraint Pt, the semidefinite
relaxation of the problem can be written as

r? = max
Wk,r

r (4a)

s.t.
∑K
k=1 tr(Wk) ≤ Pt, (4b)

hHekQkhek − σ
2
k − r ≥ 0, (4c)

Wk � 0, k = {1, 2, ...,K}, (4d)

Although the problem in (4) is a semidefinite program and can be
solved in a polynomial time, a closed-form solution was obtained in
[15]. That solution also demonstrates that the semidefinite relaxation
that led to (4) is tight. The derivation of the closed-form solution
in [15] is based on the following problem

min
Wk

∑K
k=1 tr(Wk) (5a)

hHekQkhek − σ
2
k − r? ≥ 0, (5b)

Wk � 0, k = {1, 2, ...,K}, (5c)

where r? is the optimal value of (4). Problems (4) and (5) are equiv-
alent in the sense that the optimal value for (5) is Pt and that an
optimal solution set {Wk} for one is also optimal for the other. The
key to the derivation of the closed form is the similarity in structure
between (5) and the power minimization problem for the perfect CSI
case [22–24]. In particular, we first solve the following fixed point
equations for the dual variables for the constraints in (5b)

ν−1
k = hHek

(
I +

∑
j νjhejh

H
ej

)−1

hek
(
1 + 1/γk

)
. (6)

Then we can find the beamforming directions using the eigen equa-
tion

uk =
(
(νk/γk)hekhHek −

∑
j 6=k νjhejh

H
ej

)
uk. (7)

Having found those directions, we then determine the power load-
ing. The original power loading method in [15] is based on solving
the linear equations that arise from the fact that at optimality the
constraints in (5b) hold with equality and that the optimal objective
value is Pt; i.e.,

∑
i βi = Pt. This results in K +1 linear equations

for {βk}Kk=1 and r?. That method gives the same “robustness” r to
all users.

The enhanced power loading method in [17] is based on pro-
viding greater robustness to “weaker” users, and accordingly having
comparable outage probabilities for all users. The notion of weak-
ness is measured using the variance, σ2

sk , of hHk Qkhk − σ2
k. The

users with higher σsk should be provided with more robustness,
or offset, than other users with lower σsk . Accordingly, the algo-
rithm proposed in [17] is based on finding {βk} and r? such that
E(hHk Qkhk − σ2

k) = σskr
?, and

∑
k βk = Pt. With such a strat-

egy, the power loading algorithm allocates power such that the mean
value of the rearranged SINR expression in (3) is proportional to its
standard deviation. Although E(hHk Qkhk−σ2

k) is linear in each βk,
σsk is not, and thus complicates the problem. In [17] we adopted an
iterative linearization technique in which σsk was determined from
the values of {βk}Kk=1 and r? at the previous iteration. That al-
gorithm converges with high probability [17]. The resulting power
allocation provides similar outage performance for each user, and
in the numerical experiments in [17] it provided improved overall
outage performance.

4. NETWORK MIMO OFFSET-MAXIMIZATION

In the case of full cooperation, the BSs are all connected to a central
processing unit, and all the CSI and the users’ data are shared. In
such a case, the system resembles a single BS with many distributed
antennas and can be treated as a single cell but with different power
constraints. Here we will consider the total power constraint and
per-BS power constraints. If we define Λi to be a diagonal matrix
with ones on the elements corresponding to the antennas of the ith
BS and zeros elsewhere and Pi to be the power constraint on the ith
BS, then the offset maximization precoding problem can be stated as

max
Wk,r

r (8a)

s.t.
∑K
k=1 wH

k Λiwk ≤ Pi, i = {1, 2, ..., B}, (8b)∑K
k=1 tr(Wk) ≤ Pt, (8c)

hHekQkhek − σ
2
k − r ≥ 0, k = {1, 2, ...,K}. (8d)

This problem can be solved with generic convex optimization tech-
niques. Although those techniques are effective in that they produce
an optimal solution in polynomial time, the computational cost can
still be quite high. In the following sections we consider two special
cases of the problem in (8) in which we can develop tailored algo-
rithms to solve the problem more efficiently. The first special case
arises when Pt < Pi, ∀i, in which case the condition in (8b) can
never be active and can be removed. The second special case arises
when Pt >

∑
i Pi, in which case the condition in (8c) cannot be

active.

4.1. Dominant total power constraint

In the absence of (8b), the problem in (8) is in the same form as (4)
and hence the existing techniques can be applied directly. The dif-
ference between the single-cell case and the multi-cell case lies in
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the fact that the channel vector hk is the stacking of all the chan-
nel vectors from all the BSs to a certain user k, and, accordingly,
those channel vectors have different error vectors with different er-
ror variances. In this case, we can derive the mean and variance of
hHk Qkhk − σ2

k as

E(hHk Qkhk − σ2
k)

= hHekQkhek − σ
2
k + βku

H
k Γeuk/γk −

∑
j 6=k βju

H
j Γeuj .

(9)
σ2
sk = var

(
hHekQkhek + 2Re(eHk Qkhek ) + eHk Qkek − σ2

k

)
= 2hHekQkΓeQkhek + tr(Γ2

eQ
2
k),

(10)
where Γe = E(eieHi ) and is diagonal by assumption. Since each
Qk is linear in β, the expression for the mean in (9) is linear in β.
Therefore, we can adapt the iterative linearization technique that was
developed for the single case [17] to produce the following algorithm

1. Calculate the beamforming directions uk using (6) and (7).
2. Initialize σsk = 1.
3. Update r?, and {βk} using E(hHk Qkhk − σ2

k) = σskr
? and∑

k βk = Pt, where the expected value is given in (9).
4. Update each σsk using (10).
5. Evaluate a termination criterion and return to 3 if not satisfied.

4.2. Dominant per-base station power constraints

When the constraint in (8c) is inactive, we can simplify the formula-
tion in (8) to

r? = max
wk,r

r

s.t.
∑K
k=1 wH

k Λiwk ≤ Pi, i = {1, 2, ..., B},

hHekQkhek − σ
2
k − r ≥ 0, k = {1, 2, ...,K}.

(11)
As we will see, dealing with all the BSs together as a one virtual BS
then applying per-BS power constraints is analogous to dealing with
one BS and applying per-antenna power constraints. Accordingly,
the derivation for the closed-form solution for the problem in (11)
will follow the same steps for the offset maximization algorithm with
per-antenna power constraint [17, 25]. We will briefly summarize it
here for completeness. Following what was done for the single case,
we will consider the following equivalent problem

min
wk,α

α
∑B
i=1 Pi (12a)

s.t.
∑K
k=1 wH

k Λiwk ≤ αPi, i = {1, 2, ..., B}, (12b)

hHekQkhek − σ
2
k − r? ≥ 0, k = {1, 2, ..,K}. (12c)

The equivalence here means that both problems share an optimal so-
lution. This can be verified by observing that substituting the optimal
solution of (11) in (12) will give us a value of α = 1, and by observ-
ing that the optimal α can not be smaller than one, as that would
mean that we could rescale the precoding vectors and have a larger
r? which contradicts the presumed optimality; i.e., problems (11)
and (12) share the optimal solution with α = 1. If we define qi and
νi to be the dual variables for the constraints in (12b) and (12c) re-
spectively, and Q̂ =

∑B
i=1 qiΛi, then we can write the Lagrangian

of (12) as

L(wk, α, νk, qi) =
∑K
k=1 νk(σ

2
k+r

?)+α
(∑B

i=1 Pi−
∑B
i=1 qiPi

)
+
∑K
k=1 wH

k

(
Q̂ +

∑
j 6=k νjhejh

H
ej − νk/γkhekhHek

)
wk.

The Lagrangian now has the same form as the Lagrangian in the
case of one BS with per-antenna constraints presented in [16]. Ac-
cordingly, we suggest using an analogous iterative quasi-closed form
solution. In the case of equal Pi that algorithm can be summarized
as

1. Initialize Q̂0 such that
∑
qi = B. Set n = 0.

2. Find νnk using the fixed point equations

(νnk )
−1 = hHek

(
Q̂n +

∑
j ν

n
j hejh

H
ej

)−1

hek

(
1 + 1/γk

)
.

3. Solve for the directions uk = ŵk/‖ŵk‖, where

ŵk =
(
Q̂n +

∑
j ν

n
j hejh

H
ej

)−1

hek .

4. Find r?, and {βk} by solving E(hHk Qkhk − σ2
k) = σskr

?

and
∑
k βk =

∑
i Pi.

5. Update Q̂n+1 using qn+1
i = qni +tn(

∑K
k=1 wH

k Λiwk−Pi),
where tn is the step size used.

6. Increment n, check whether
∑K
k=1 wH

k Λiwk − Pi < δi,
where δi is the maximum allowable violation of the power
constraint for the ith BS. If the test fails, return to 2.

5. DISTRIBUTED ALGORITHM BASED ON VIRTUAL
USERS

Implementing the centralized processing and data sharing system de-
scribed in the previous section can be a challenging task no mat-
ter how the beamformers and the power allocation are determined.
Therefore, there is considerable interest in distributed systems that
coordinate their signals via limited backhaul communications [1].
In a distributed coordinated system each user is served by a single
BS, and we will assume that that assignment has been made. We
consider a system in which each BS obtains estimates of the chan-
nels to users that have been assigned to it, and also obtains estimates
of the channels to users assigned to neighbouring BSs upon which
the BS may impose significant interference. If we let hbek denote the
estimate of the channel from BS b to a user k that is not assigned to
that BS, then one way in which BS b could manage the interference
it imposes on user k would be to enforce a constraint of the form
‖(hbek )

H∑
j wb

j‖2 < ε. Such “soft-shaping” constraints (e.g., [26])
are convex and can be incorporated into a variety of precoder design
formulations (e.g., [2, 26]) and effective beamforming vectors op-
timization can be obtained using generic convex tools. However,
the structure of those constraints results in dual formulations that do
not appear to be amendable to the analysis that we developed for
the centralized case. In our quest for low-complexity algorithms for
the distributed case, we will instead consider an alternative design
approach that takes into consideration the interference imposed on
users in other cells by treating them as virtual users when design-
ing the normalized beamformers in the cell of interest [6, 27, 28].
This principle was implemented using a zero-forcing (ZF) approach
in [27, 28], and the regularized zero-forcing approach in [6]. In this
section we propose a scheme in which the normalized beamformers
are designed using the closed-form solutions of the offset maximiza-
tion approach in (6) and (7) and the power loading is designed using
the simple iterative algorithm in [17].

To describe that approach, we let the set Ki denote the indices
of the users assigned to BS i and let K̃i denote the union of that
set and the indices of the users to which BS i should mitigate its
interference. We will discuss the selection of Ki and K̃i below. The
number of users in these sets are denoted byKi and K̃i, respectively.
With the goal of computation efficiency in mind, each BS designs the
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normalized beamformers as if it were designing them for all users in
K̃i. It then designs the power loading for the users in Ki. That
procedure is as follows

1. Find νk for all users in K̃i using (6).

2. Solve for the directions for the users in Ki using (7).

3. Initialize σsk = 1.

4. Find the power loading for the users in Ki and r? using (9)
and the power constraint

∑
k∈Ki

βk = Pi.

5. Update σsk using (10).

6. Return to 4 until an appropriate stopping criterion is satisfied.

Although the design of the beamforming directions and the power
loading in the above algorithm is distributed, the BSs within a clus-
ter coordinate their designs through the selection of the users in K̃i.
While many strategies are possible, one simple strategy that keeps
the amount of information to be shared between the BSs in the clus-
ter small is to first select Ki using a conventional BS assignment
technique for cell-by-cell operation and then have the neighbouring
BSs inform BS i of the users in their cells that are to have interfer-
ence mitigated. BS i would acquire the CSI for these users as if they
were assigned to the ith cell.

The above algorithm provides implicit control over the influence
that the users in K̃i\Ki have on the beamforming directions in cell i.
This is provided through the target SINR for those virtual users. As
can be seen from (6), νk scales in an approximately inverse fashion
with γk, and as can be seen in (7), νk controls the influence of the
channel to user k on all the beamforming directions. This kind of
flexibility is not present in the ZF and RZF techniques in [6, 27, 28].

6. SIMULATION RESULTS

To illustrate the performance of the proposed algorithms we consider
a system consisting of two BSs separated by a distance of 2.4km,
each with 4 antennas, serving a total of 4 users. Half of the users are
uniformly distributed in a circle of radius 1.5km around the first BS,
the other half are similarly distributed around the other BS. We as-
sume a large scale fading model described with a path-loss exponent
of 3.52 and log-normal shadow fading with 8dB standard deviation.
The small scale fading is modelled using the standard i.i.d. Rayleigh
model. We assume a TDD system with a channel estimation error
variance σ2

e = 0.04, and an SINR target of γ = 3dB for all users
(including the “virtual users” in the algorithms of Section 5). The
per-BS power constraint is Pi = PtKi/K. We assume that each
user has a signal sensitivity of -90dBm, and we will consider this
power as the noise power. In Fig. 1, we plot the outage probability
versus the total power constraint Pt for the cooperative algorithms
with total power constraints (Section 4.1) and per-BS power con-
straints (Section 4.2). We also assess the performance of the dis-
tributed algorithms in Section 5; once with the users assigned to the
BS for which they were generated and another time with BS selec-
tion according to the channel norm (i.e., the user is assigned to the
BS that has a channel vector with bigger Euclidean norm).

We will compare our algorithms to two centralized algorithms
and one distributed algorithm from the literature. The first is an
adaptation of the robust centralized coordination algorithm in [10,
Equation (5)] for the considered scenario. In the adaptation a bi-
nary search on the zero-outage region size is performed to find the
largest “zero-outage” region for which a problem with a total power
constraint is feasible. That problem is convex, but involves many
linear matrix inequality constraints. The second comparison is with
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Fig. 1: Outage probability for 4 users, 4 antennas, γ=3dB, σ2=-
90dBm, σh = 0.2

the robust centralized coordination algorithm in [7, Equation (5)]
with per-BS power constraint Pi = Pt/2. This algorithm involves
repeated solutions of modified perfect-CSI problems. In these two
cases, each BS is assigned to the users in its area (no BS selection),
and the processing is done in a centralized manner.

From Fig. 1 we observe, as expected, that the centralized co-
operative algorithms proposed in Sections 4.1 and 4.2 provide the
best performance. Perhaps the more interesting observations from
Fig. 1 are that the proposed distributed coordination algorithm pro-
vides better performance than the existing centralized coordination
algorithms in [10] and [7]. This is despite the fact that the centralized
algorithms in [10] and [7] incur significantly larger computational
costs. A comparison of the distributed algorithms in Fig. 1 shows
that the proposed distributed coordination algorithm outperforms the
original versions of the distributed coordination RZF-based algo-
rithm in [6] that uses the regularization factor described in [6, Equa-
tion (52)]. Furthermore, when the proposed algorithm is augmented
with a simple BS selection scheme it also outperforms a variant
of the algorithm in [6] that employs the power loading developed
in [17]. (That variant significantly improves the performance of [6].)
This is despite the fact that the proposed algorithm is based on a
simple iterative algorithm. For reference, Fig. 1 includes the perfor-
mance of the power loaded offset maximization approach [15] ap-
plied to each cell individually. In the low power regime this approach
performs well, whereas at higher power levels, where the impact of
the interference increases, its relative performance degrades.

7. CONCLUSION

In this paper we proposed multi-cell MISO downlink algorithms that
can provide substantial robustness against channel uncertainties. We
proposed a centralized cooperative algorithm that has significant per-
formance gains compared to other algorithms in literature, and has
lower computational complexity. We also provided a distributed co-
ordination algorithm that needs very limited backhaul communica-
tion, and incurs an even lower computational cost, and yet can pro-
vide better performance than several existing methods.
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