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ABSTRACT

We investigate the achievable uplink rate of multi-cell mas-
sive multi-input multi-output (MIMO) systems considering
pilot reuse across cells. Based on tractable approximations
for the achievable rates, we derive the optimal pilot length to
maximize the sum rate per cell. Interestingly, it is found that,
for moderately large numbers of base station (BS) antennas,
the optimal pilot length is above the minimum feasible value,
and the gains brought by the extra amount of training dimin-
ish as the reuse factor grows. Simulation results confirm the
accuracy of our analysis.

Index Terms— Multicell, uplink massive MIMO, pilot
reuse, pilot length

1. INTRODUCTION

With increasing demands for higher transmission rates, mas-
sive MIMO has attracted much interest and is being investi-
gated as a key technique for 5G [1]. With a very large number
of BS antennas, massive MIMO can reap the benefits of con-
ventional MIMO at a greater scale, including improvements
in energy and spectral efficiencies, without requiring multiple
antennas at the user terminals [2–11]. It has been demonstrat-
ed in [2] that when the number of BS antennas grows unlimit-
ed, uncorrelated interference and noise can be eliminated. In
addition, if the number of BS antennas sufficiently exceeds
the number of users, linear receivers become optimal [3].

An important practical issue in massive MIMO is channel
estimation, which is typically performed using uplink pilot
training. Users employing the same pilot sequence give rise to
the pilot contamination issue, which persists even with unlim-
ited BS antennas [2]. To diminish this effect, more orthogonal
pilot sequences can be used to expand the distance between
interference users. This increases the pilot length, following
for improved channel estimation, however, it also reduce the
time for data transmission. Here, we are interested in deter-
mining the optimal pilot length that maximizes the sum rate.
A similar problem has been addressed in [12, 13], but pilot
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reuse is not considered in [12], and [13] does not present
optimization results with finite number of antennas. In this
paper, accounting for pilot reuse effects, we derive tractable
expressions for the achievable uplink rate with maximal ratio
combining (MRC) and zero forcing (ZF) receivers. Through
these analytical results, the optimal pilot length which max-
imizes the sum rate per cell is put forward. It is found that
a larger pilot reuse factor can improve the rate performance.
In the asymptotic massive MIMO regime (i.e., with the infi-
nite number of antennas), the optimal pilot length is shown to
be the minimum feasible value which ensures orthogonality
within the set of pilots. However, for moderate numbers of
BS antennas, the optimal pilot length is above the minimum
feasible value, and diminishes towards the minimum feasible
value as the pilot length grows. Our analytical results are val-
idated via simulations.

2. SYSTEM MODEL

Consider uplink transmission in a cellular network consist-
ing of L cells, each with one M -antenna BS and N single-
antenna users. We assume all users transmit data to their BSs
in the same time-frequency resource synchronously. Then,
the M × 1 received vector at the ith BS is given by

yi =
√
puGiixi +

√
pu

∑L

l=1
l̸=i

Gilxl + ni, i = 1, . . . , L, (1)

where Gil (l = 1, . . . , L) is the M×N MIMO channel matrix
between the N users in the lth cell and the M BS antennas in
the ith cell,

√
puxl denotes the N × 1 vector containing the

transmitted signals from all users in the lth cell, while pu is
the average transmitted power of each user, and ni ∈ CM×1

represents additive white Gaussian noise (AWGN) with zero
mean and unit variance.

The channel transmission coefficient from the nth user
in the lth cell to the mth antenna of the ith BS is denoted
as gminl, i.e., [Gil]mn = gminl, which can be modeled as
gminl = hminl

√
βinl [2], where hminl ∼ CN (0, 1) denotes

the fast fading element from the nth user in the lth cell to the
mth antenna of the ith BS, which is statistically independent
across users and cells, and βinl is the large-scale fading co-
efficient from the nth user in the lth cell to the ith BS. It is
assumed constant across the antenna array.
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2.1. Channel Estimation

Channel estimation is performed using uplink pilots. These
are of length τ symbols, assumed smaller than the coherence
time of the channel. Users in one cell transmit orthogonal pi-
lot sequences, and pilots can be reused among different cells
with a reuse factor ρ. Therefore, the L cells are divided into
ρ groups, where cells within one group share the same set of
pilots, and cells in different groups use orthogonal pilots. If
the ith cell belongs to the qth group, we define f1(i) = q,
where f1(·) is an index mapping from cells to groups.

Let the nth user in the ith cell use the τ × 1 pilot vector√
τψni (τ ≥ ρN ), which satisfies

ψH
niψcl =

{
1, f1(l) = f1(i), c = n,
0, otherwise. (2)

As a result, the ith BS receives the M × τ noisy pilot matrix

Yi =
√
τpu

N∑
c=1

giciψ
T
ci +
√
τpu

L∑
l=1,l̸=i

N∑
c=1

giclψ
T
cl +Ni, (3)

where gicl denotes the cth column of the channel matrix Gil,
and Ni represents the M × τ AWGN matrix. The BS es-
timates the channel of the nth user in its own cell by first
applying

Yiψ
∗
ni =

√
τpugini +

√
τpu

∑L

l=1,l ̸=i
f1(l)=f1(i)

ginl +wi, (4)

where wi , Niψ
∗
ni. Since ψH

niψni = 1, the entries of wi

are ∼ CN (0, 1). Note that the second term in (4) denotes
interference from users in other cells that are using the same
pilot sequence. From (4), the minimum mean-square-error
estimate of the channel vector gini admits [14]

ĝini =

(∑L

l=1
f1(l)=f1(i)

ginl +
1
√
τpu

wi

)
ηini, (5)

where ηicl , τpuβicl/

(
1 + τpu

∑L
l′=1

f1(l′)=f1(l)

βicl′

)
.

2.2. Achievable Uplink Rate

Let Ĝii = [ĝi1i, . . . , ĝiNi], and Âii be a linear receiver matrix
established from Ĝii. Then, with the channel estimation error
ḡici , ĝici − gici, the nth element of the detected signal is

rni=
√
puâ

H
ini

L∑
l=1

N∑
c=1

giclxcl−
√
puâ

H
ini

N∑
c=1

ḡicixci+â
H
inini, (6)

where âini is the nth column of Âii. According to the classi-
cal assumption of worst-case uncorrelated Gaussian noise [4],
along with the fact that Var {ḡmici} = βici(1−ηici), and that
the variance of noise elements is 1, the achievable uplink rate
of the nth user in the ith cell reads

Rni = E
{
log2

(
1 + pu

∣∣∣âH
iniĝini

∣∣∣2/Ω)} , (7)

where

Ω , pu

N∑
c=1,c̸=n

{∣∣∣âH
iniĝici

∣∣∣2}+ pu

L∑
l=1,l̸=i

N∑
c=1

{∣∣∣âH
inigicl

∣∣∣2}

+

[
pu

N∑
c=1

βici (1− ηici) + 1

]{
∥âini∥2

}
. (8)

3. OPTIMAL PILOT LENGTH

Larger τ can increase the accuracy of channel estimation, but
it will also squeeze the time left for data transmission. There-
fore, we aim to obtain the optimal τ to maximize the uplink
sum rate, i.e.,

τ∗ = arg max
Nρ≤τ≤T

T − τ

T

N∑
n=1

Rni, (9)

where T is the channel coherence time in symbols. Note that
the subscript i in (9) represents an arbitrary cell, so the op-
timal τ solved by (9) can be regarded as a general system
parameter applied for all cells. Next, we seek solutions to
this problem for two different receivers.

3.1. MRC Receiver

For the MRC receiver, âini = ĝini. It is difficult to derive ex-
act solutions for the optimization problem due to the expecta-
tion in (7). Therefore, we provide a tractable approximation
which simplifies the optimization.

Proposition 1 With MRC receivers, the achievable uplink
rate of the nth user in the ith cell can be approximated as

RMRC
ni ≈ R̃MRC

ni = log2

1 +
(M + 1)p2uβ

2
iniτ

∆1τ +

(
pu

L∑
l=1

N∑
c=1

βicl + 1

)
 ,

(10)
where

∆1 , Mp2u
∑L

l=1,l ̸=i
f1(l)=f1(i)

β2
inl − p2uβ

2
ini

+ p2u
∑L

l=1
f1(l)=f1(i)

βinl

L∑
l=1

N∑
c=1

βicl + pu
∑L

l=1
f1(l)=f1(i)

βinl. (11)

Proof: See Appendix A. �
Note that the rate in (10) is conditioned on specific user lo-

cations. However, the pilot length we aim to optimize should
be independent of this. As such, in the following, for users
within cell i, we assume some power control technique is ap-
plied to compensate for the large-scale fading, so that puβici

(for any c) can be set uniformly equal to a user-location inde-
pendent value, λii. For interfering users from cell l (l ̸= i),
we assume a typical user with the average large-scale fading
from that cell, which can be regarded as the representation for
any user in cell l, so that βicl (for any c) can be approximat-
ed by the average large-scale fading, λil. This is reasonable
since the fluctuations in the large-scale fading across differ-
ent cells are expected to be very small because of the distance
between cells. This approximation will be validated with nu-
merical results. Applying these assumptions in (10),

R̃MRC,λ
ni = log2

1+ (M + 1)λ2
iiτ

∆2τ +

(
Nλii +Npu

∑L
l=1
l ̸=i

λil + 1

)
 ,

(12)
where

∆2 , Mp2u
∑L

l=1,l ̸=i
f1(l)=f1(i)

λ2
il − λ2

ii+(
λii+pu

∑L

l=1,l ̸=i
f1(l)=f1(i)

λil

)[
N

(
λii+pu

∑L

l=1
l̸=i

λil

)
+1

]
. (13)
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With (12), the optimization problem (9) becomes

τ∗ = arg max
Nρ≤τ≤T

S1(τ), (14)

where S1(τ) , N T−τ
T R̃MRC,λ

ni . In solving this optimization,
the following lemma will be important.

Lemma 1 If a1, a2, b1, b2 and b3 are all positive,

s1(x) = (a1 − a2x) log2

(
1 +

b1x

b2x+ b3

)
, (15)

is concave on x ∈ (0,∞), and has a maximum value at x∗

which is the solution of s′1(x) = 0.
Proof: See Appendix B. �

Now, we give the solution of (14).
Proposition 2 The solution of (14) obeys the following:

• if S ′
1(Nρ) > 0, the optimal τ∗ is obtained by Algorithm

1 and rounded to the nearest larger/smaller integer;

• if S ′
1(Nρ) ≤ 0, the optimal τ∗ = Nρ.

Proof: With Lemma 1 and ∆2 > 0, we know S1(τ) is
concave. Since S ′

1(T ) < 0 and τ ∈ [Nρ, T ], it is deduced
that if S ′

1(Nρ) > 0, S1(τ) first increases and then decreases.
Therefore, there exists an optimal τ∗ which satisfies S ′

1(τ) =

0 can maximize S1(τ), and it can be approximately obtained
by Algorithm 1. If S ′

1(Nρ) ≤ 0, S1(τ) is a monotonically
decreasing function. Therefore, the optimal τ∗ is Nρ. �

Algorithm 1 Solving equation S ′
1(τ) = 0

Input: S1(τ), initial interval [a, b], and maximal error ϵ
Output: τ∗ or Failure due to bad initial interval

1: F(τ)← S ′
1(τ)

2: if F(a) · F(b) ≤ 0 then
3: while (b− a) > ϵ do
4: x = (a+ b)/2
5: if F(x) · F(a) < 0 then
6: b← x
7: else
8: a← x
9: end if

10: end while
11: τ∗ ← x
12: else
13: return ‘Failure (bad initial interval)’
14: end if

Corollary 1 When M → ∞, (14) is solved as τ∗ = Nρ.

Note from Corollary 1 that with infinite M , it is optimal
to use the smallest feasible pilot length. This is because when
M → ∞, all the uncorrelated interference vanishes. The
residual interference (pilot contamination) cannot be removed
by increasing the training period, as it is an interference floor
inherent to pilot reuse in the multi-cell system. Therefore,
increasing the pilot length can only squeeze the data trans-
mission time and impair the capacity performance.

3.2. ZF Receiver

For ZF receivers, âiniĝici = δ[n−c], with δ[·] the Kroneck-
er delta function. As before, upon substituting into (7), it is
difficult to derive exact solutions for the optimization prob-
lem (9). Therefore, a tractable lower bound of the achievable
uplink rate with ZF receivers is given first.

Proposition 3 With ZF receiver, the achievable uplink rate of
the nth user in the ith cell can be lower bounded as

RZF
ni ≥ R̃ZF

ni = log2

1 +
(M −N)p2uβ

2
iniτ

∆3τ +

(
pu

L∑
l=1

N∑
c=1

βicl + 1

)
 ,

(16)
where

∆3 , (M −N − 1)p2u
∑L

l=1,l̸=i
f1(l)=f1(i)

β2
inl − p2u

N∑
c=1

β2
ici

+ p2u
∑L

l=1
f1(l)=f1(i)

βinl

L∑
l=1

N∑
c=1

βicl + pu
∑L

l=1
f1(l)=f1(i)

βinl. (17)

Proof: See Appendix C. �
Similar to before, to get the optimal pilot length, we re-

move the dependence on the large-scale fading in (16). Under
the same assumptions made in (12), we have now

R̃ZF,λ
ni = log2

1+ (M −N)λ2
iiτ

∆4τ +
(
Npu

∑L
l=1 λil + 1

)
 , (18)

where

∆4 , (M −N − 1)p2u
∑L

l=1,l̸=i
f1(l)=f1(i)

λ2
il −Nλ2

ii+(
λii+pu

∑L

l=1,l ̸=i
f1(l)=f1(i)

λil

)[
N

(
λii+pu

∑L

l=1
l̸=i

λil

)
+1

]
. (19)

With (18), the optimization problem (9) becomes

τ∗ = arg max
Nρ≤τ≤T

S2(τ), (20)

where S2(τ) , N T−τ
T R̃ZF,λ

ni .

Proposition 4 The solution of (20) obeys the following:
• if S ′

2(Nρ) > 0, the optimal τ∗ is obtained by Algorithm
1 and rounded to the nearest larger/smaller integer;

• if S ′
2(Nρ) ≤ 0, the optimal τ∗ = Nρ.

Proof: Follows similar steps as Proposition 2. �

Corollary 2 When M → ∞, (20) is solved as τ∗ = Nρ.

4. NUMERICAL RESULTS

The cell radius considered in our system is rc = 1000 meters
and N users are distributed randomly and uniformly in each
cell, with the exclusion of a central disk of radius rh = 100
meters around each BS. We determine the set of cells within
8rc. We assume that βicl = z/(r/rh)

v, where z is a log-
normal random variable with standard deviation σ = 8dB, r
is the distance from the cth user in the lth cell to the ith BS,
and the path loss exponent v = 3.8. The coherence time of
the channel is set to T = 196.

In Fig. 1, we compare the simulated uplink sum rate in
(7) with the analytical expressions (12) and (18), where λil

is set to the average of βicl over 104 realizations. Note that
λii in (12) and (18) is assumed uniform across users due to
power control. Different pilot reuse factors are considered,
and the pilot length τ is fixed. We can see a close agreement
between the simulation and analytical results, especially for
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Fig. 1: Uplink sum rate vs. the number of BS antennas, where pu = 10dB,
N = 10 and τ = 30.

the ZF receiver. It is seen that a larger ρ improves the uplink
performance. This is because with fixed N and τ , a larger
pilot reuse weakens the interference from other cells without
reducing the number of users or the data transmission time.
Given the tightness of our analytical results, we will use them
to explore the optimal pilot length in the subsequent results.
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Fig. 2: Uplink sum rate vs. the pilot length τ with MRC receivers, where
M = 100, N = 10 and pu = 10dB.

In Fig. 2 and 3, we analyze the change of uplink sum rate
for MRC and ZF receivers, respectively, as the pilot length τ
increases. Here, N is fixed, and we are interested in a moder-
ately large number of BS antennas, in which case increasing
τ brings some gain in terms of channel estimation. Due to the
constraint that τ ≥ Nρ, curves with different ρ have a differ-
ent starting point. It can be found that when ρ = 1, the sum
rate first increases and then decreases. However, for larger ρ,
the sum rate almost monotonically decreases. This can be ex-
plained by noting that with fixed N , the benefit of increasing
τ is that it provides higher channel estimation accuracy. But
for larger ρ, τ starts at larger values which already give a very
good channel estimate, and therefore the benefit brought by a
slightly better estimation is negligible as compared with the
loss in transmission time.
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Fig. 3: Uplink sum rate vs. the pilot length τ with ZF receivers, where
M = 100, N = 10 and pu = 10dB.

5. CONCLUSION

In this paper, we studied the achievable uplink rate of multi-
cell massive MIMO systems with MRC and ZF receivers.
Allowing different cells to use orthogonal pilots, we derived
tractable expressions for the achievable rates. Based on these
results, we obtained the optimal pilot length to maximize the
sum rate per cell. It was found that larger pilot reuse factor
can improve the rate performance, and as it grew, the optimal
pilot length turned closer to the minimum feasible value.

A. PROOF OF PROPOSITION 1

With some basic algebraic operations, we have E
{
∥ĝini∥

2} =
Mβiniηini, and

E
{∣∣∣ĝH

iniĝici

∣∣∣2} =

{
(M2 +M)β2

iniη
2
ini, c = n,

Mβiniβiciηiniηici, c ̸= n,
(21)

as well as
L∑

l=1,l̸=i

N∑
c=1

E
{∣∣∣ĝH

inigicl

∣∣∣2} =

M2η2
ini

∑L

l=1,l ̸=i
f1(l)=f1(i)

β2
inl +Mβiniηini

L∑
l=1,l̸=i

N∑
c=1

βicl. (22)

Then, using âini = ĝini and [15, Lemma 1] for (7), we can
obtain the desired result.

B. PROOF OF LEMMA 1

Through some basic algebra, we know that s′′1(x), the second
derivative of s1(x), is less than 0. Therefore, s1(x) is con-
cave, and s′1(x) is monotonically decreasing with x. More-
over, we have s′1(0) = a1b1/ln 2b3 + c1/ln 2c3 > 0, and
when x → ∞, s′1(x) → −a2 ln

(
1 + b1

b2

)
< 0. Hence, we

can deduce that with x ∈ (0,∞), s1(x) first increases and
then decreases. Therefore, there exists a x0 which satisfies
s′1(x0) = 0 and maximizes s1(x).

C. PROOF OF PROPOSITION 2

For ZF receivers, we know that if f1(l) ̸= f1(i), or f1(l) =
f1(i) and c ̸= n, âini is independent of ĝicl. Then,

E
{∣∣∣âH

inigicl

∣∣∣2} = βiclE
{
∥âini∥2

}
. (23)

If f1(l) = f1(i) and c = n, we have

E
{∣∣∣âH

inigicl

∣∣∣2} = E
{∣∣∣âH

ini (ĝinl − ḡinl)
∣∣∣2} . (24)

From (4), we have that ĝinl = βinl

βini
ĝini, and ḡminl ∼

CN (0, βinl(1− ηinl)). According to the property of MMSE
estimation [14], ḡinl is independent of ĝinl. Then, (24)
becomes

E
{
|âinigicl|2

}
= E

{∣∣∣∣βinl

βini
− âH

iniḡinl

∣∣∣∣2
}

=
β2
inl

β2
ini

+ βinl(1− ηinl)E
{
∥âini∥2

}
. (25)

Let zini , 1/ ∥âini∥2, which is a Chi-squared random vari-
able [16]. Then, E

{
∥aini∥2

}
= 1/βiniηini(M −N). From

Jensen’s inequality, E {log2 (1 + 1/x)} ≥ log2 (1 + 1/E {x}),
we can obtain the desired result.
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