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ABSTRACT

A systematic framework is put forth in this paper to integrate re-
newable energy sources (RES), distributed storage units, cooling fa-
cilities, as well as dynamic pricing into the workload and energy
management tasks for a data center network. To cope with RES un-
certainty, the resource allocation task is formulated as a robust opti-
mization problem minimizing the worst-case net cost. The resulting
problem is reformulated as a convex program, and then solved in a
distributed fashion using the dual decomposition approach. Numeri-
cal tests demonstrate the performance gain of the proposed approach
over the existing alternative.

Index Terms— Geo-distributed data centers, renewable energy,
smart grid, cloud computing, robust optimization.

1. INTRODUCTION

In order to reduce the electricity cost of data centers (DC), consider-
able efforts from both industry and academia have been made over
the last decade [1]. Carbon emission concerns along with the large
energy consumed by DCs challenge their sustainability [2]. Exploit-
ing renewable energy sources (RES) is clearly key to sustainable DC
operation [3, 4]. Yet, high penetration of renewables unavoidably
brings increased variability and uncertainty to the traditional power
system. A major issue with renewable-integrated energy manage-
ment is to account for its random and nondispatchable nature, which
motivates the use of energy storage units [5]. Supply-side energy
management with distributed storage units was considered for a ho-
mogeneous DC [6, 7], and geo-distributed DCs [8]. Taking advan-
tage of RES, a two-time scale Lyapunov optimization technique was
developed to control the energy supply in both ahead-of-time and
real-time settings [5]. Note that most of prior works (e.g., [5, 7, 9])
assumed that RES generation is either independent and identically
distributed (i.i.d.), or precisely known a-priori, which is not realistic
in practice. Hence, how to properly deal with the RES uncertainty
for DCs’ daily operations is still an open problem.

In this paper, we consider the optimal workload and energy man-
agement for a cloud network consisting of multiple geo-distributed
mapping nodes and DCs. Distinct from existing works, distribution-
free uncertainty sets of the unknown renewable generation, as well
as a two-way energy trading mechanism are introduced to account
for the stochastic and nondispatchable nature of RES. Built on prac-
tical models, the resource allocation task is formulated as a robust
optimization problem, which minimizes the system’s worst-case net
cost subject to DC operational constraints. Leveraging the problem
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structure, we show that it can be cast as a convex program. Capi-
talizing on the dual decomposition approach, an efficient distributed
solver is developed. The proposed algorithm is guaranteed to yield
the optimal strategy of robust workload and energy management,
which also facilitates distributed implementations among the map-
ping nodes and DCs. Finally, extensive numerical tests with real data
corroborate the merits of the proposed framework and approaches.
Notation. R for real numbers; (·)′ stands for vector and matrix trans-
position; and [a]+ := max{a, 0}. Finally, the indicator function
1(A) takes value 1 when the event A happens, and 0 otherwise.

2. SYSTEM MODELS

Consider a network with geographically distributed mapping nodes
J := {1, 2, . . . , J}, and DCs I := {1, 2, . . . , I}, over a discrete-
time scheduling horizon T := {1, . . . , T}. Mapping nodes first
collect data requests from nearby areas, and then distribute them to
different DCs. Each DC has three subsystems: a cooling (heat dissi-
pation) subsystem, an IT subsystem, and a power supply subsystem.

2.1. Network and workload models

In general, DC workloads are either delay-sensitive (‘must-serve’)
or delay-tolerant [10]. For ‘must-serve’ workloads, let Atj and atji
denote the rate of service requests arriving at mapping node j, and
the one from node j to DC i in slot t, respectively. For delay-tolerant
workloads, let Qj denote the jobs collected by node j, and Q :=⋃J
j=1Qj with Qi

⋂
Qj = ∅, ∀i 6= j, representing the set of all

delay-tolerant jobs. The qth delay-tolerant job can be specified by its
total demand Wq and active interval Tq := {Sq, . . . , Eq}. Let w̃ti,q
and wti,q denote the amount of qth delay-tolerant job routed from its
original mapping node to DC i, and the amount being processed by
DC i in slot t, respectively; and Ltji denote the link bandwidth from
node j to DC i at time t. As shown in Fig. 1, these quantities must
satisfy the following constraints:

∑I

i=1
atji = Atj , ∀j ∈ J , t ∈ T (1)∑Eq

t=Sq

∑I

i=1
w̃ti,q =Wq, ∀q ∈ Q (2)

atji +
∑

q∈Qj

w̃ti,q ≤ Ltji, ∀i ∈ I, j ∈ J , t ∈ T (3)

where (1) ensures that ‘must-serve’ workloads are dispatched once
arrived; (2) requires routing each delay-tolerant job before its dead-
line; and (3) captures the bandwidth limitation of data transfer.

Per DC, ‘must-serve’ workloads are processed immediately,
while delay-tolerant workloads are deferrable. DC operations of
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Fig. 1. A workload distribution diagram.

delay-tolerant workloads can be described as

Eq∑
τ=Sq

w̃τi,q =

Eq∑
τ=Sq

wτi,q, ∀i ∈ I, q ∈ Q (4a)

t∑
τ=Sq

w̃τi,q ≥
t∑

τ=Sq

wτi,q, ∀i ∈ I, q ∈ Q, t ∈ [Sq, Eq − 1] (4b)

where (4a) adheres to the deadline completion requirements, while
(4b) entails the causality of delay-tolerant workloads. The total IT
demand of DC i in slot t, is thus given by

dti =
∑

j∈J
atji +

∑
q∈Q

wti,q, ∀t ∈ T . (5)

2.2. Power demand and supply models

Let mt
i denote the number of active servers in DC i at time t that

satisfies
M i ≤ m

t
i ≤M i, 0 ≤ dti ≤ mt

iDi (6)

whereM i,M i stand for the minimum and maximum number of ho-
mogeneous servers, and Di is the server capacity1. With each server
running at a speed of dti/(m

t
iDi), the total power consumption is

Pi,IT (d
t
i,m

t
i) =

%dti
2

mt
iD

2
i

+ (1− %)mt
i

where 1− % denotes the power consumed in the idle state [12].
Along with the increasing density of IT equipment in DCs, a

considerable amount of electricity is consumed by the cooling sys-
tem that generally operates in two modes [7, 13]: outside-air and
chilled-water cooling. Due to different efficiencies and capacities of
the two cooling approaches, for a given Pi,IT , there is an optimal
allocation between outside-air cooling and chiller cooling. It turns
out that the cooling consumption minimization admits a closed-form
solution [7]

F ti (Pi,IT ) =

{
κti(Pi,IT )

3, Pi,IT ≤ P ti,s
κti(P

t
i,s)

3 + γ(Pi,IT − P ti,s), Pi,IT > P ti,s

where κti and P ti,s are temperature-dependent parameters, and con-
stant γ is the cooling coefficient of chilled-water cooling. For nota-
tional convenience, let P ti (d

t
i,m

t
i) := F ti (d

t
i,m

t
i)+Pi,IT (d

t
i,m

t
i),

which is jointly convex in {dti,mt
i}.

We consider each DC to be supplied by a RES-integrated micro-
grid consisting of a conventional generator (CG) (e.g., fuel genera-
tor), an on-site renewable generator (RG) (e.g., wind or solar), and
an energy storage unit (e.g., battery).

1Since the number of servers is very large, mti can be relaxed to be a
positive real number for simplicity [11].

Let P ti,g denote the energy output of the CG in DC i per slot t,
which is upper bounded by P i,g; that is,

0 ≤ P ti,g ≤ P i,g, ∀i ∈ I, t ∈ T . (7)

The change of CG energy output in two consecutive slots is bounded
by the following so-termed ramping constraints:

P ti,g − P t−1
i,g ≤ R

up
i , P

t−1
i,g − P

t
i,g ≤ Rdw

i , ∀i ∈ I, t ∈ T (8)

where Rup
i and Rdw

i are the ramping-up and -down rates of CG.
Let P ti,b denote the power delivered to (or drawn from) the stor-

age unit in DC i at slot t, which amounts to either charging (P ti,b >
0) or discharging (P ti,b < 0). Let C0

i and Cti denote the initial
amount of stored energy and the state of charge (SoC) of the stor-
age unit in DC i at the beginning of time slot t. Each unit has a finite
capacity Ci as well as a minimum level Ci. In short, the energy
storage unit can be compactly described as

Ci ≤ C
t
i ≤ Ci, ∀i ∈ I, t ∈ T (9)

Ct+1
i = Cti + P ti,b, ∀i ∈ I, t ∈ T (10)

P i,b ≤ P
t
i,b ≤ P i,b, ∀i ∈ I, t ∈ T (11)

where the bounds of (dis-)charging amount P i,b < 0 and P i,b > 0
are dictated by physical limits.

Consider now the RES vector ei := [E1
i , . . . , E

T
i ]
′ generated

at DC i across all slots. Due to the unpredictable and intermittent
nature of RES, ei is unknown a priori. The proposed method of
postulating an uncertainty region provides the decision maker with
ranges instead of point forecasts, which is essentially distribution-
free and robust to prediction errors. The actual RES generation ei is
assumed to lie in a polyhedral uncertainty set Ei (see also [14]):

Ei :=
{
ei | Eti ≤ E

t
i ≤ E

t
i, E

min
i ≤

∑
t∈T

Eti ≤ Emax
i

}
(12)

where Eti (E
t
i) denotes a lower (upper) bound on Eti , and the total

renewables at DC i over the scheduling horizon is bounded by Emin
i

and Emax
i .

2.3. Cost-revenue model

In addition to the internal energy resources (namely, CG, RG, and
storage unit), DCs can resort to the main grid market in an on-
demand manner. Suppose that the energy can be purchased from
the wholesale electricity market around DC i in period t at price αti ,
while the energy is sold at price βti . Notwithstanding, we shall al-
ways set αti ≥ βti to avoid less relevant buy-and-sell activities of the
DC for profit. Let P̃ ti := P ti +P

t
i,b1(P t

i,b
>0) denote the total energy

consumption of DC i per slot t, and Sti := P ti,g+E
t
i−P ti,b1(P t

i,b
<0)

the total energy supply in DC i per slot t. For DC i, the worst-
case transaction cost for the whole scheduling horizon is defined as
Gi({P̃ ti }, {Sti}) := maxei∈Ei

∑T
t=1 α

t
i[P̃

t
i −Sti ]+−βti [Sti−P̃ ti ]+.

With ψti := (αti−βti )/2, φti := (αti+β
t
i )/2, andRti = P ti +P

t
i,b−

P ti,g , we rewrite Gi({P̃ ti }, {Sti}) as

Gi({Rti}) = max
ei∈Ei

T∑
t=1

(
ψti |Rti − Eti |+ φti(R

t
i − Eti )

)
. (13)

In addition, let GCi(P
t
i,g) denote the cost of CG at DC i in slot

t, which is convex piecewise linear or smooth quadratic. The rev-
enue earned per slot t can be modeled as a concave function, e.g.,
U tq(w

t
i,q) = utqw

t
i,q , where utq is the revenue per unit of qth work-

loads at time t.
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3. ROBUST GEOGRAPHICAL LOAD BALANCING

Based on the practical models in Section II, we pursue in this
section a robust workload and energy management approach for
the considered DC network. Over the scheduling horizon T , the
system operator per mapping node performs an (e.g. hour-) ahead-
of-time schedule to optimize workload routing {atji, w̃ti,q}, while
the system operator in each DC optimizes scheduling of servers
and workloads {mt

i, w
t
i,q}, CG generation {P ti,g}, and battery (dis-

)charging energy {P ti,b}. With x collecting optimization variables
{atji, wti,q, w̃ti,q, dti,mt

i, P
t
i,g, P

t
i,b, R

t
i, C

t
i}, the system operator

wants to solve the following problem:

min
x

I∑
i=1

Gi({Rti}) +
T∑
t=1

I∑
i=1

(
GCi(P

t
i,g)−

∑
q∈Q

U tq(w
t
i,q)

)
(14a)

s.t. Rti ≥ P ti + P ti,b − P ti,g, ∀i ∈ I, t ∈ T (14b)
(1)− (11). (14c)

It is worth mentioning that thanks to the worst-case transaction
cost Gi({Rti}), the RES induced randomness has been eliminated;
thus, (14) contains only deterministic variables. Since the objective
(14a) is monotonically increasing withRti , it is easy to see that (14b)
is always binding at the optimal solution x∗, which entails the con-
vexity of (14). However, the objective (14a) is to minimize a point-
wise maximum function, which is generally non-differentiable.

3.1. Lagrange dual approach

Notice that constraints (1)–(3) and (14b) couple variables across
mapping nodes, DCs, workloads, and the RES, so a system oper-
ator over the entire network is essential to collect all the information
and solve the problem in a centralized fashion, which may not be
feasible in an Internet-scale network [15]. However, since (14) is
a convex problem, a Lagrange dual approach can be developed to
efficiently find its optimal dual solution with zero duality gap in a
decentralized manner [16]. Letting $ := {λti,q, νti , πti} collect all
the Lagrange multipliers associated with the constraints (4)–(5) and
(14b)2, the partial Lagrangian function of (14) is

L(x,$) :=

I∑
i=1

[
Gi({Rti}) +

T∑
t=1

(
GCi(P

t
i,g)−

∑
q∈Q

U tq(w
t
i,q)

)]

+
I∑
i=1

T∑
t=1

νti

(
dti −

∑J

j=1
atji −

∑
q∈Q

wti,q

)
+

I∑
i=1

∑
q∈Q

T∑
t=1

λti,q

(∑t

τ=Sq

wτi,q −
∑t

τ=Sq

w̃τi,q

)

+

I∑
i=1

T∑
t=1

πti
(
P ti + P ti,b − P ti,g −Rti

)
.

With X denoting the set given by constraints (1)–(3), and (6)–
(11), the dual function is thusD($) := minx∈X L(x,$), and the
dual problem of (14) is

max
$
D({πti}, {λti,q}, {νti})

s.t. πti ≥ 0, νti ∈ R, ∀i, t

λ
Eq

i,q ∈ R, λti,q ≥ 0, ∀i, q, t ∈ [Sq, Eq − 1]. (15)

2For notational convenience, let λti,q = 0, ∀i, q ∈ Q, t /∈ Tq .

For the dual problem (15), the projected subgradient method can
be employed to obtain the optimal $∗, namely

$(k + 1) = proj ($(k) + µg$(k)) (16)

where proj(·) is the projection operator to the feasible set of $; k
is the iteration index; µ > 0 is a constant stepsize; and g$(k) :=
{gπt

i
(k), gλt

i,q
(k), gνti (k)} are the subgradients of D($) with re-

spect to the Lagrange multipliers. Specifically, we have

gπt
i
(k) = P ti (k) + P ti,b(k)− P ti,g(k)−Rti(k) (17a)

gλt
i,q

(k) =
∑t

τ=Sq

wτi,q(k)−
∑t

τ=Sq

w̃τi,q(k) (17b)

gνti (k) = dti(k)−
∑J

j=1
atji(k)−

∑
q∈Q

wti,q(k) (17c)

where primal variables x(k) can be obtained by

min
{atji,w̃

t
i,q}

T∑
t=1

I∑
i=1

[
−atjiνti (k)−

∑
q∈Qj

w̃ti,q
∑T

τ=t
λτi,q(k)

]
s.t. (1)− (3) (18)

min
{0≤wt

i,q≤Wq}

T∑
t=1

[
wti,q

(∑T

τ=t
λτi,q(k)− νti (k)

)
− U tq(wti,q)

]
(19)

and

min{
Rt

i,m
t
i,

Pt
i,b, P

t
i,g, dti

}
Gi({Rti}) +

T∑
t=1

[
νti (k)d

t
i +GCi(P

t
i,g)

+ πti(k)(P
t
i + P ti,b − P ti,g −Rti)

]
s.t. (6)− (11). (20)

The subproblems (18) and (19) are linear programs (LPs), which
can be optimally solved using off-the-shelf algorithms. However,
since Gi({Rti}) is non-differentiable due to the absolute value oper-
ator and the maximization over ei ∈ Ei, (20) still challenges existing
solvers. To address this, consider splitting (20) into two subprob-
lems, namely

min{
mt

i, P
t
i,b,

Pt
i,g, dti

}
T∑
t=1

[πti(k)(P
t
i + P ti,b − P ti,g) + νti (k)d

t
i +GCi(P

t
i,g)]

s.t. (6)− (11) (21)

and

min
{Ri≤Rt

i≤Ri}
Gi({Rti})−

T∑
t=1

πti(k)R
t
i. (22)

where Ri and Ri are lower and upper bounds of the right hand side
of (14b). Depending on the function GCi(P

t
i,g), subproblem (21) is

either an LP or a quadratic program, which is efficiently solvable.
And for nonsmooth subproblems (22), a standard subgradient itera-
tion can be employed to obtain the optimal solution as

Rti(`+ 1) = Rti(`)− η`gRt
i
(`), ∀t ∈ T (23)

where ` denotes iteration index, and {η`} is an appropriate stepsize
sequence. The partial subgradient of Gi({Rti}) with respect to Rti
can be obtained as

gRt
i
(`) :=

∂Gi({Rti})
∂Rti

=

{
αti − πti(k), if Rti(`) ≥ Eti

∗
(`)

βti − πti(k), if Rti(`) < Eti
∗
(`)
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Algorithm 1 Distributed workload and energy management
1: Initialize: Choose a proper $(0) and stepsize µ
2: repeat k = 0, 1, 2 . . .
3: Each DC solves (19) and (21)–(22) separately to obtain
{wti,q(k), Rti(k),mt

i(k), P
t
i,b(k), P

t
i,g(k), d

t
i(k)}

4: Each mapping node solves (18) and sends {atji(k), w̃ti,q(k)}
to each DC

5: DCs update $(k) via (16) and send them to mapping nodes
6: Run averages to approximate primal variables via

x(k) =
1

k
x(k − 1) +

k − 1

k
x(k − 1)

7: until Convergence
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Fig. 2. Comparison of worst-case net costs.

where e∗i (`) := [E1
i
∗
(`), . . . , ETi

∗
(`)]′ for the given {Rti(`)} is

found by solving [cf. (12) and (13)]

max
ei∈Ei

∑T

t=1

(
ψti |Rti(`)− Eti |+ φti(R

t
i(`)− Eti )

)
. (24)

Under the condition αti ≥ βti , ∀t ∈ T , problem (24) is essen-
tially convex maximization over a polyhedron, which is generally
NP-hard. Fortunately, the globally optimal solution is attainable at
the extreme points of Ei [17, Sec. 2.4]. Leveraging the polyhedral
structure of Ei, we adopt an efficient vertex enumerating algorithm
to obtain e∗i efficiently.

3.2. Optimality and distributed implementation

For the subgradient iterations (23), if a diminishing stepsize satis-
fying (i)

∑∞
`=0 η` = ∞, and (ii)

∑∞
`=0 η

2
` < ∞ is adopted, the

sequence (16) converges as ` → ∞ to the optimal {Rti(k)
∗}. Re-

garding the constant stepsize µ in (16), the subgradient iterations will
converge to a neighborhood of the optimal solution $∗. The size of
the neighborhood is proportional to the stepsize µ [17]. Since the ob-
jective of (14) is not strictly convex, running averages of the primal
sequence {x(k)} can be used to recover the optimal primal solu-
tions. It is also worth noting that the considered robust geographical
load balancing facilitates a distributed implementation, where opti-
mization tasks are distributed among mapping nodes and individual
DCs; see Algorithm 1.

4. NUMERICAL EVALUATION

The DC network includes six DCs and six mapping nodes uniformly
located in the eastern, central, and western US. The time horizon
spans T = 12 hours, corresponding to the interval 1PM–12AM in
Eastern Time Zone. Notice that we use the Eastern Time Zone for
time-keeping, so the peaks of workload demands, RES and prices
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are different in the three areas. Finally, a robust local policy is intro-
duced as a benchmark, where workloads received by each mapping
node are distributed only to its nearest DC. The specific parameter
configurations are omitted due to limited space.

In Fig. 2, the proposed algorithm is compared with the local
policy in terms of their worst-case net costs. Within 500 iterations,
the proposed algorithm converges to a worst-case net cost 25% lower
than that of the local policy. This is because the proposed algorithm
takes both spatial and temporal variations into account. For instance,
mapping nodes can intelligently route workloads to a remote DC
where the system demand is lower, RES availability is higher, or, the
local energy price is more affordable.

Fig. 3 depicts the optimal workloads schedule of DC 1. One
observation is that real-time IT demand closely reflects the instanta-
neous energy purchase price αt1. Specifically, the proposed method
tends to schedule more workloads when purchase price αt1 is low
(1PM-5PM), and vice versa. Moreover, flexible delay-tolerant work-
loads are more likely to be processed when the ‘must-serve’ demand
is low, or, when the purchase price is low. This corroborates the merit
of our proposed algorithm in “smoothing” the IT demand curve.

The optimal power consumption schedules of DC 1 is depicted
in Fig. 4, where less power is consumed when αt1 is higher (6PM).
Using combined cooling sources, the average cooling coefficient of
the proposed algorithm is around 0.17, which is more efficient than
the simple chilled-water cooling with a constant coefficient γ = 0.2.
With the goal of mitigating the high variability of RES, batteries are
encouraged to charge when the worst-case renewable generations are
high and the energy prices are low (1PM-4PM).

5. CONCLUSIONS

Robust ahead-of-time workload and energy management for green
DCs was considered in this paper. Taking into account the spatio-
temporal variation of workloads, renewables and electricity market
prices, a resource allocation problem was formulated to minimize
the system net cost including the network operational cost and the
worst-case energy transaction cost. Relying on the strong duality of
the convex reformulation, a Lagrange dual based distributed solver
was developed to yield the optimal solution.
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