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ABSTRACT

This paper examines the secrecy in distributed detection un-
der threat of a global eavesdropper (Eve) which has access to
all sensors decisions. To measure secrecy, we compare the
detection performance at the fusion center (FC) and at Eve in
terms of their respective Kullback-Leibler Divergence (KLD).
When the channels between sensors and the FC are noiseless
and the channels between sensors and Eve are noisy, we show
that the KLD ratio between the FC and Eve can be made arbi-
trarily large, provided the log-likelihood ratio at local sensors
is unbounded. As a result, a perfect secrecy can be achieved
asymptotically by making the KLD at Eve arbitrarily small
with almost 0 detectability while keeping the KLD at the FC
arbitrary large, for an almost error-free detection. This result
reveals an intriguing relationship between networks size and
networks secrecy.

Index Terms— Asymptotic Perfect Secrecy, Distributed
Detection, Eavesdropping, Wireless Sensor Networks

1. INTRODUCTION

Comprised of a large number of low cost, low power sensors,
wireless sensor networks (WSNs) are widely employed in
many applications such as environmental monitoring, health-
care, and diagnostics of complex systems [1]. As a key func-
tion in WSNs, distributed detection has been an important and
active research area over the past several decades [2–10]. In
the presence of cyber-attacks, WSNs must be carefully de-
signed to meet both the security and secrecy requirements.

Recently, several attempts were made to address the issue
of eavesdropping for distributed detection, when an attacker
has partial or full access to sensor outputs [11]. Marano et
al. designed censoring rules for local sensors based on the
assumption that the attacker does not have direct access to
sensors data but can monitor the transmission activity of the
channel [12]. For a two-sensor network where the attacker
has partial access to the WSN, Li et al. jointly designed sen-
sor quantizer and fusion rules to maximize the Fusion Center
(FC) detection probability by constraining both the FC false
alarm probability and the attacker detection probability [13].
Performance metric such as Kullback-Leibler Divergence

(KLD) has been widely used for asymptotic performance
measure as it represents the exponential decay of missed
detection error probability in the Nayman-Pearson formula-
tion [14]. Nadenla et al. considered the secrecy problem in
distributed detection against eavesdropping attacks for WSNs
in parallel networks with N sensors, one FC and one global
Eavesdropper (Eve), where the goal is to maximize KLD at
the FC for one sensor, DF , under the constraint that KLD
at Eve for one sensor, DE , is no more than a prespecified
threshold TE [15]. While these approaches are effective in
accomplishing their stated objectives, none provide asymp-
totic perfect secrecy (APS), as Eve still receives some useful
information. For example, since TE 6= 0, as the number of
sensors N increases, the overall detection performance at
Eve will improve exponentially regardless of how noisy the
Eve’s channels are, and become nearly perfect when N is
sufficiently large! Although carefully designed encryption
schemes may provide a nearly perfect secrecy solution [16],
they are often too complicated to be implemented and the
latency associated with the long block codes is not desired in
WSNs with stringent time delay and power constraints.

In this paper, we investigate the secrecy problem in dis-
tributed detection for WSNs in parallel networks with N sen-
sors, one FC and one global Eve, similar as in [15]. Con-
sidering the detection performance as a function of KLD at
the FC and at Eve for all N sensors, DF and DE, the perfect
secrecy is achieved if DF can be made arbitrarily large and
DE → 0. Towards this end, we first study the behavior of like-
lihood ratio quantizer (LRQ) in terms of the ratio between DF
and DE. We discover a novel LRQ property of the aforemen-
tioned KLD ratio DF/DE which can be made arbitrarily large,
by carefully choosing the local sensor decision rules. As an
application of this novel LRQ property when the FC chan-
nels are noiseless and Eve channels are noisy, the constraint
of DF ≥ TF and DE ≤ TE can be satisfied simultaneously,
for any arbitrary TF , TE > 0, asN →∞. In other words, the
FC and local sensors can share data without being snooped by
Eve when Eve has a noisy channel. Contrary to the belief that
larger networks are less secure, our result shows that secrecy
can be improved and APS can be achieved by increasing the
network size.
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2. DISTRIBUTED DETECTION WITH A GLOBAL
EAVESDROPPER

We consider binary distributed hypotheses testing in a par-
allel WSN consisting of N sensors as shown in Fig. 1. Let
the hypotheses H0 and H1 represent the target absence and
presence, respectively. Upon observing the phenomenon
Xi, sensor i makes a binary decision Ui ∈ {0, 1} based on
its decision rule γi, such that P (Ui = 1) = γi(Xi), i =
1, 2, . . . , N . The sensors and the FC are connected via bi-
nary symmetric channels (BSC) [17] [18]. Sensor i sends the
decision Ui to the FC over a BSC with transition error proba-
bility (TEP) ρF,i < 1

2 ; meanwhile, a global Eve also observes
the sensor decisions, Ui, with a BSC with TEP ρE,i <

1
2 .

We assume that Eve’s channels are noisier than the FC’s,
ρE,i > ρF,i by the use of secrecy keys or directional anten-
nas at sensors [19] [20]. We assume the channels are also
independent and identically such that ρF = ρF,i, ρE = ρE,i,
1 ≤ i ≤ N . Let pk(Xi) = p(Xi;Hk) be the probability
density function (pdf) under Hk at sensor i, where k = 0, 1.
We assume that p0(Xi) and p1(Xi) are continuous pdfs with
no point mass and sensors observations are independent and
identically distributed (i.i.d.),

p(X1, X2, . . . , XN ;Hj) =

N∏
i=1

p(Xi;Hj), j = 0, 1,

where i = 1, . . . , N . The cases where the sensor observa-
tions/channels are independent but not identical can be ana-
lyzed in a similar fashion.
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Fig. 1. Distributed detection with a global Eve.

Under the i.i.d. condition, it has been shown that the iden-
tical sensor decision rule design where each sensor uses the
same likelihood ratio test (LRT) with the same threshold is
asymptotically optimal [8, 21]. That is, the optimal decision
rule γi(·) at sensor i is given by

γi(x) = γ(x) =

1 p1(x)
p0(x)

≥ η

0 p1(x)
p0(x)

< η.

(1)

Let the false alarm probability of the ith local sensor
be αi = P (Ui = 1;H0) = P

(
p1(Xi)
p0(Xi)

> ηi;H0

)
and

the detection probability be βi = P (Ui = 1;H1) =

P
(
p1(Xi)
p0(Xi)

> ηi;H1

)
. Because of the i.i.d. condition on

both detection and transmission, we have α = αi; β =
βi; ρF = ρF,i; ρE = ρE,i, where i = 1, . . . , N . And the
relationship between αi and βi is given by [22]

dβi
dαi

= ηi = η. (2)

Therefore, if ln (p1(Xi)/p0(Xi)) is unbounded, then η →
∞ when α, β → 0, or η → 0 when α, β → 1.

Due to the BSC between the local sensors and the FC, the
received decision Vi, from the ith local sensor at the FC has
the following performance,

P (Vi = 1;H0) = αF = α(1− ρF ) + (1− α)ρF
= ρF + (1− 2ρF )α,

P (Vi = 1;H1) = βF = β(1− ρF ) + (1− β)ρF
= ρF + (1− 2ρF )β.

(3)

Similarly, at Eve, the received decision Wi, has the fol-
lowing performance,

P (Wi = 1;H0) = αE = ρE + (1− 2ρE)α,

P (Wi = 1;H1) = βE = ρE + (1− 2ρE)β.
(4)

3. SECRECY IN DISTRIBUTED DETECTION

3.1. KLD in Distributed Detection

When the decision center observations are i.i.d., Stein’s
lemma [6] and large deviation theory [23, 24] provide a
bound on the probability of missed detection (Pm) via the
error exponent D(p0(·)||p1(·)), where p0, p1 are the pdf
under H0 and H1 hypotheses, respectively. Specifically,
− lim
N→∞

1
N logPm ≤ D(p0(·)||p1(·)) when the false alarm

probability (Pf ) is constrained to be less than a fixed con-
stant, and the equality can be achieved by the optimal LRT
or other asymptotic optimal detectors such as type based
detectors so that [16]

Pm ≈ e−ND(p0(·)||p1(·)) (5)

For binary sensor decisions with P (Ui = 1;H0) = α and
P (Ui = 1;H1) = β, we have P (Ui = 0;H0) = 1 − α and
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P (Ui = 0;H1) = 1− β, the KLD [25] for each sensor is

D (p0||p1) = α log
α

β
+ (1− α) log (1− α)

(1− β)
= D (α, β) .

3.2. Asymptotic Perfect Secrecy

The system secrecy is measured by information leakage of
the total sensors to Eve when the FC is required to perform
distributed detection subject to required system performance
constraints on Pm and Pf . The KLD of each received sensor
decision Vi at the FC is DF = D(αF , βF ) and KLD of each
received sensor decisionsWi at the Eve isDE = D(αE , βE).
Owing to i.i.d. condition, the total KLD at the FC is intro-
duced to measure the system secrecy, which is DF = N×DF ,
similarly, DE = N ×DE . Therefore, from (5), with optimal
detectors, Pm ≈ e−DF at the FC and Pm ≈ e−DE at Eve for
any given Pf–probability of false alarm constraints. Using
the relationship between the KLD and the detection perfor-
mance, we formalize the secrecy problem as two constrained
optimization problems

DF ≥ TF , s.t.min DE, (6)

where TF > 0, is a threshold to guarantee the overall de-
tection performance of the FC, meanwhile if DE is 0, perfect
secrecy is achieved. Or conversely, to achieve perfect secrecy,
one seeks to

max DF, s.t. DE → 0, as N →∞ (7)

In [15], authors re-formulate the optimization problem as
max(DF − DE) = max(N(DF − DE)); however, it may
not be an ideal metric of measuring asymptotically perfect
secrecy. Elaborations on this would give in section 4. We, in-
stead, propose to use the KLD ratio between the FC and Eve
for all N sensors (8) in that a novel property of the KLD ra-
tio can be used to develop a scheme that achieves asymptotic
perfect secrecy.

R(α) =
DF

DE
=
N ×DF

N ×DE
=
N ×D(αF , βF )

N ×D(αE , βE)
. (8)

Theorem 1. For a WSN with the TEP at the FC, ρF and
the TEP at Eve, ρe, if the local sensor log-likelihood ratio
ln (p1(x)/p0(x)) is unbounded from above, then the KLD ra-
tio between the FC and Eve R(0) = lim

α→0
R(α, β (α)) =

(1−2ρF )2(1−ρE)ρE
(1−2ρE)2(1−ρF )ρF

; similarly, if ln (p1(x)/p0(x)) is un-
bounded from below, then the KLD ratio between the FC
and Eve, R(1) = lim

α→1
R(α, β (α)) = (1−2ρF )2(1−ρE)ρE

(1−2ρE)2(1−ρF )ρF
.

Proof. If ln (p1(x)/p0(x)) is unbounded below, then as α→

1, η → 0, applying L’Hopital’s rule to the ratio R(α),

R(1) = lim
α→1

d
dαD (αF , βF )
d
dαD (αE , βE)

= lim
α→1

dαF
dα

(
d

dαF
D (αF , βF )

)
dαE
dα

(
d

dαE
D (αE , βE)

)
= lim
α→1
β→1
η→0

(1− 2ρF )
(
η βF−αF
(1−βF )βF

+ log αF (1−βF )
βF (1−αF )

)
(1− 2ρE)

(
η βE−αE
(1−βE)βE

+ log αE(1−βE)
βE(1−αE)

) =

lim
α→1
β→1
η→0

(1− 2ρF )
2
(β − α)

 η
(1−βF )βF

+
log

(
1+

αF−βF
βF (1−αF )

)
βF−αF


(1− 2ρE)

2
(β − α)

 η
(1−βE)βE

+
log

(
1+

αE−βE
βE(1−αE)

)
βE−αE

 .

Since

lim
x→0

log(1 + x)

x
= 1,

lim
α→1
β→1

log
(
1 + αF−βF

βF (1−αF )

)
βF − αF

= lim
α→1
β→1

−1
βF (1− αF )

,

Therefore,

R (1) = lim
α→1
β→1
η→0

(1− 2ρF )
2
(

η
(1−βF )βF

− 1
βF (1−αF )

)
(1− 2ρE)

2
(

η
(1−βE)βE

− 1
βE(1−αE)

)
=

(1− 2ρF )
2
(1− ρE) ρE

(1− 2ρE)
2
(1− ρF ) ρF

.

Similarly, if ln (p1(x)/p0(x)) is unbounded above, then as
α→ 0, η →∞,

R(0) =
(1− 2ρF )

2
(1− ρE) ρE

(1− 2ρE)
2
(1− ρF ) ρF

= R(1). (9)

Remark 1. When the FC’s channels are perfect such that
ρF = 0 and Eve’s channels are noisy such that ρE > 0, we
have R(1) =∞ or R(0) =∞, given the log-likelihood ratio
is unbounded from at least one end. This can be used to de-
sign APS distributed detectors. Specifically, if local sensors
operate at either end of the receiver operating characteristic
(ROC) curves, Eve over a noisier BSC will be unable to ob-
tain any useful information from local sensors. As a result
of this property, we show that asymptotic perfect secrecy is
achievable.
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4. EXPERIMENTAL RESULTS

In this section, we illustrate the performance trade-offs at Eve
and the FC via the classic distributed detection of a constant
signal in zero mean additive white Gaussian noise,

H1 : Xi = A+ Zi

H0 : Xi = Zi,

where Zi ∼ N (0, 1) is the normalized observation noise with
standard Gaussian distribution, A > 0 is the constant signal
to be detected, and signal-to-noise ratio, SNR = A2. In this
settings, the log-likelihood ratio log p1(xi)/p0(xi) = Ax −
A2

2 is unbounded. And the detection probability is given by
β(α) = Q(Q−1(α)− 10SNR/20).

We first examine system secrecy when the FC has a non-
perfect channel, ρF = 0.01 to validate the results obtain in
Theorem 1. The upper subfigure of Fig. 2 shows the perfor-
mance comparison between the FC and Eve in terms of KLD
when N = 1, SNR = 0 dB (A = 1) and ρE = 0.3; the mid-
dle plot shows the corresponding KLD ratio where the max-
imum achievable KLD ratio, R = 129.7, is achieved at both
end of the ROC curve, and the marker stars indicate the limit
derived in (9), which is consistent with the proof in Section 3.

To achieve APS, we compare the detection performance at
Eve and the FC in terms of their total KLD DE and DF, where
DE is set as 0.02√

N
, SNR = 0 dB, ρF = 0, ρE = 0.3 (Fig. 3).

It is shown that as N increases, DE → 0 and DF → ∞, i.e.,
the FC can make perfect detection and the detectability at Eve
would essentially be negligible.
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Fig. 2. KLD Performance of the FC and Eve when N = 1.

In Fig. 4, ROC curves are plotted using two different met-
rics to measure secrecy, the total KLD difference [15] and the
total KLD ratio. Other conditions are set as SNR = 0 dB,
ρF = 0, ρE = 0.3. If the KLD ratio is chosen as the met-
ric and DE is constrained at 0.02 for different N , the cor-
responding Eve curves are almost overlapped and close to
diagonal line which implies 0 detectability. Meanwhile, the
detectability of the FC keeps increasing as the number of sen-
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Fig. 3. The KLD at the FC and at Eve for N sensors.

sors increase. However, if the KLD difference, max(N(DF−
DE)) in Fig. 2, is chosen as the metric, where DE = 0.041,
even though the corresponding FC’s detection performance is
nearly perfect, we can see that Eve’s detectability is growing
as N increases; when N → ∞, Eve’s detection performance
is going to be as good as the FC’s. All of the prior simu-
lations support our claim that if KLD ratio is chosen as the
secrecy metric in the distributed detection system, APS can
be achieved.
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Fig. 4. ROC curves for the FC and Eve.

5. CONCLUSION

We proposed to use the KLD ratio as a secrecy design metric
for distributed detection subject to eavesdropping attacks. We
proved that under the condition that Eve has a noisy channel
and the FC has a noiseless channel, APS is possible between
local sensors and the FC in the presence of a global Eve. In-
terestingly, our result shows that WSNs becomes more se-
cure against eavesdropping attacks as the number of nodes
increases, until ultimately perfect secrecy is achieved.
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