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ABSTRACT

In this paper, we propose a methodology for compensation of
attacks on consensus networks. We assume that the network
achieves its desired consensus value under a normal opera-
tional setting i.e. when the networked system is not under at-
tack. We propose an adaptive based technique to ensure that
the networked system maintains its desired behavior when
the system inputs are under some false-date injection attacks.
The proposed method adaptively estimates attack signals and
compensates their effects. We demonstrate the good perfor-
mance of our proposed compensation scheme through sim-
ulation studies that consider both constant and time-varying
attack signals.

Index Terms— Cyber-physical attacks, consensus, net-
worked systems.

1. INTRODUCTION

Advances in technology during the past decades have made
it possible to realize cyberphysical systems in which dis-
tributed sensing, communication, and computation technolo-
gies are embedded into physical systems in the hope of
making them more efficient and reliable. This leads to the
creation of complex networked systems consisting of nu-
merous local command units that communicate with each
other and with the environment to effectively maintaian the
performance of individual systems such that the whole net-
work achieves a certain goal. Due to their distributed nature,
networked systems are highly vulnerable to attacks that are
aimed to destabilize the whole network or at least degrade
its performance. Moreover, networked systems have been
increasingly using open communication channels, such as
wifi, intranet, or internet channels, in their routine measur-
ments and operations making them also vulnerable to the
attacks that are launched in the cyber domain, though target
the physical process [1, 2, 3]. This gives raise to the problem
of cyberphysical security which investigates methods to de-
sign cyberphysical systems such that they are both robust to
disturbances and resilient to attacks [4, 5, 6, 7, 8].

Different attack scenarios are discussed in [5] where at-
tack paradigms are categorized based on the required model
knowledge, disruption resources and disclosure resources.
Motivated by reports in [1], the authors of [6] study a class
of attack strategies known as replay attacks in a noisy envi-
ronment. In these attacks, an attacker injects harmful signals
into systems while replaying previously recorded healthy
measurements to the operator. So called covert attacks are
studied in [8] and a feedback strategy is proposed that allows
an attacker to take over the command of a system inside the
network without being detected by the network supervisory
unit. It is shown in [8] that covert attacks are impossible to
be detected if attackers have the complete knowledge of the
plant model. False-data injection attacks are explored in [7]
where an attacker injects false signals into the measurements
in order to affect the system states. The authors of [4, 9]
discuss zero-dynamics attacks that are impossible to detect
and also demonstrate that complete knowledge of the net-
work model as well as the corresponding initial conditions
are required for these types of attacks. These types of attacks
are further investigated in [10].

Most of the tools for detecting, identifying, and compen-
sating attacks only consider attacks into an individual sys-
tem within a network (see e.g. [9], [11], [8], [12], [13]).
In a situation where there are multiple systems networked
together, one can employ the developed tools suited for at-
tack compensation of individual systems if there exist a cen-
tralized processing unit that has access to inputs and outputs
of the whole network (by modeling the whole network as a
single system). However, many practical networked systems
consist of subsystems that are operated trough a local com-
mand unit yielding a decentralize scheme [14, 15]. To the
authors’ best knowledge there exist a gap in the literature re-
garding analysis of attacks on distributed networks. As a very
first attempt, in this paper we investigate attack compensation
for consensus networks with constant (or practically slowly
time-varying) attacks. We particularly consider the problem
of compensating the input attacks on a group of networked
agents connected together through the consensus law. The
considered framework for modeling input attacks allows com-
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pensation of both cyber attacks (caused by interfering with the
signals that are communicated from the command units to the
system inputs) or physical attacks (caused by interfering with
the physical actuator inputs). Given a consensus networked
with a fixed topology that reaches its desired value in a normal
operational situation, we propose a general methodology to
modify the original consensus law such that the modified net-
worked maintains its desired behavior in presence of hidden
attack signals. Although our proposed methodology relies on
simplifying assumptions such as constant attack signals and
consensus networks, it is the first contribution that consid-
ers attack compensation in decentralized scheme. This paper
shows that even under the above simplifying assumptions, the
decentralized approach causes theoretical complications that
do not exist in typical centralized scenarios and are not easy
to handle without employing rigorous tools from adaptive and
nonlinear system theory. This contribution paves the way to
tackle more complicated decentralized scenarios in future.

The structure of this paper is as follows. The problem
is formulated and the proposed compensation scheme is pre-
sented in Section 2. Simulation studies in Section 3 demon-
strate the performance of our proposed scheme and conclud-
ing remarks in Section 4 complete the paper.

2. PROBLEM FORMULATION AND MAIN RESULTS

Consider a network of N linear systems, which we refer to as
agents. Each agent is assumed to have simple dynamics as

ẋi(t) = ui(t) ∈ R, i = 1, 2 . . . , N. (1)

Assume that the agents are connected together through the
following consensus law in nominal conditions when attack
signals do not exist.

ui(t) =
∑N

j=1
aij(xj(t)− xi(t)), (2)

where (aij) represents an entry of the adjacency matrix of the
network [16].

Now, suppose that the consensus network is under addi-
tive input attacks by some signals uai (t), i = 1, . . . , N , which
cannot be detected by an anomaly detector operating on the
network [17]. Suppose that

ui(t) = uci (t) + uai (t), (3)

where uci (t) ∈ Rmi is the output of our proposed compen-
sator that is to be designed later and uai (t) is the attack signal.
In this paper, we analyze attack signals that are constant or
slowly time-varying, i.e. their variation with time is slower
than the response time of the closed loop system1. Assume

u̇ai (t) = 0. (4)

1This is an standard simplifying assumption commonly imposed in adap-
tive systems design [18, 19].

Note that uai (t) can model both cyber attacks caused by inter-
fering the signals that are communicated from the some com-
mand units to the system inputs, or physical attacks caused
by interfering the physical actuator inputs. For instance, in a
robotic application, uai (t) might represent an interference in
the command signals sent through some open channels to the
robot’s motors (cyber attack) or a physical force that is ap-
plied to the robot through some means of direct manipulation
(physical attack). The attack signals aim to destruct the con-
sensus of the network. Our main objective in this paper is to
modify the nominal law (2) by adding a compensator to miti-
gate the effect of the attack signals. We propose the following
compensator

uci (t) =
∑N

j=1
aij(xj(t)− xi(t))− ûai (t), (5)

˙̂uai (t) = −γi
∑N

j=1
aij(xj(t)− xi(t)), (6)

where γi are positive scalars. The following theorem summa-
rizes the properties of the above attack compensation scheme.

Theorem 1 Consider a network of agents with dynamics (1).
Suppose that attack signals exist according to (3) and (4). De-
fine ũai (0) := ûai (0) − uai (0). Given the compensator (5)-(6)
and assuming that the the topology of the network is con-
nected and undirected, we have

(a) xi(t) → xj(t) for all i = 1, . . . , N and ẋi(t) → x̊∗ :=

−
∑N

i=1 γ
−1
i ũa

i (0)∑N
i=1 γ

−1
i

for all i = 1, . . . , N , i.e. velocities of
agents reach the consensus value of x̊∗. In addition, the
estimates ûai (t) are all bounded for all t ≥ 0 and con-
verge to the limit ûai (∞) = uai − x̊∗ for all i = 1, . . . , N .

(b) If γi = γ > 0 for all i = 1, . . . , N and
∑N
i=1 ũ

a
i (0) = 0,

then all estimate ûai (t), i = 1, . . . , N converges expo-
nentially to uai and all of the agents xi(t), i = 1, . . . , N
exponentially converge to the average consensus x∗ =
1
N

∑N
i=1 xi(0).

Proof: Using (1), (3), and (5), we have ẋi(t) =
∑N
j=1 aij

(xj(t) − xi(t)) − ũai (t). We define the augmented vectors
x(t) := [x1(t) x2(t) . . . xN (t)]>, uc(t) := [uc1(t) uc2(t) . . .
ucN (t)]>, ûa(t) := [ûa1(t) ûa2(t) . . . ûaN (t)]>, ua := [ua1 u

a
2

. . . uaN ]> (noting that uai , i = 1, . . . , N are constant), and
ũa(t) := ûa(t) − ua. One can rewrite the resulting closed
loop dynamics of the agent and proposed compensator as

ẋ(t) = −Lx(t)− ũa(t), (7)
˙̃ua(t) = ΓLx(t). (8)

where Γ = diag(γ1, . . . , γN ) and L is Laplacian matrix of the
network whose elements are given by [16]

Lij =

{ ∑N
k=1,k 6=i aik, i = j

−aij , i 6= j
(9)
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Proof of part (a): Since the graph is connected and undi-
rected, the Laplacian matrix L is symmetric positive semi-
definite with only one zero eigenvalue [20, 14]. We introduce
the following Lyapunov function

L(t) =
1

2
x(t)>Lx(t) +

1

2
ũa(t)>Γ−1ũa(t) (10)

Employing (7)-(8) and (10), one can obtain

L̇(t) = −x(t)>L>Lx(t) = −|Lx(t)|2 ≤ 0 (11)

Since L(t) is lower bounded (i.e. L(t) ≥ 0) and non-
increasing (i.e. L̇(t) ≤ 0), L(t) converges to a limit. One can
also verify that L̈(t) is bounded implying that L̇(t) is uni-
formly continuous. Hence, using Barbalat’s lemma [21], we
conclude that L̇ = Lx(t)→ 0. Since the graph is connected,
L has only a single zero eigenvalue whose associated right
eigenvector is given by α1 for some α [20, 14]. This implies
that x(t) → α1 which means that all of the agents reach the
consensus value α (but this does not necessarily imply that α
is constant).

Since L(t) is non-increasing, we have L(t) ≤ L(0).
Let us employ the Cholesky decomposition L = M>M
for some M ∈ Rn×n with the same rank as L [22]. Using
(10) and noting that the minimum singular value of Γ−1 =
diag(γ1, . . . , γN )−1 is max

i
(γi)

−1, we have 1
2 |Mx(t)|2 +

1
2 (max

i
(γi))

−1|ũa(t)|2 ≤ L(t) ≤ L(0). This implies that

Mx(t) (and consequently Lx(t)) and ũa(t) are bounded for
all t ≥ 0. Using (7)-(8), one can verify that

Lẋ(t) = −LLx(t)− Lũa(t), (12)

Lẍ(t) = (L2 − LΓ)Lx(t) + L2ua(t). (13)

Since Lx(t) and ũa(t) are bounded, (13) implies that Lẍ(t)
is bounded for all t ≥ 0. This yields that Lẋ(t) is uni-
formly continuous. Moreover, we showed that Lx(t) → 0.
Hence, invoking Barbalat’s lemma implies that Lẋ(t) → 0.
Using (12) yields that Lũa(t) → 0 which means that
ũa(t) → β1 for some β ∈ R. Using (7) and noting
Lx(t) → 0, we also have ẋ(t) → −β1. It only remains
to show that β is constant and to compute its value. Multi-
plying the sides of (8) by Γ−1 we have Γ−1 ˙̃ua(t) = Lx(t).
Summing up the elements of the resulting vectors and de-
noting the elements of the Laplacian matrix by Lij we
have

∑N
i=1 γ

−1
i

˙̃uai (t) =
∑N
i=1

∑N
j=1 Lijxj(t). We re-

call that
∑N
i=1

∑N
j=1 Lijxj(t) =

∑N
i=1

∑N
j=1 aij(xj(t) −

xi(t)) = 0 since the graph is undirected [20, 14]. Hence
we have

∑N
i=1 γ

−1
i

˙̃uai (t) = 0 which means that the value of∑N
i=1 γ

−1
i ũai (t) is invariant implying that

∑N
i=1 γ

−1
i ũai (t) =∑N

i=1 γ
−1
i ũai (0) for all t ≥ 0. Since ũai (t) → β we have∑N

i=1 γ
−1
i β = β

∑N
i=1 γ

−1
i =

∑N
i=1 γ

−1
i ũai (0) which im-

plies that β =
∑N

i=1 γ
−1
i ũa

i (0)∑N
i=1 γ

−1
i

. Defining x̊∗ = −β completes
the proof of part (a).

Proof of part (b): summing up the elements of the sides
of (7), setting γi = γ, and

∑N
i=1 ũ

a
i (0) = 0 and invok-

ing part (a) we conclude that x̊∗ = 0 and ûai (∞) = uai .
This proves the convergence of ûai (t) to uai . We have∑N
i=1 ẋi(t) = −

∑N
i=1 Lijxj(t) −

∑N
i=1 ũ

a(t) = 0 since∑N
i=1 Lijxj(t) = 0 due to the undirected graph topology and∑N
i=1 ũ

a(t) =
∑N
i=1 ũ

a(0) = 0 due to the assumption of
Theorem. Hence we have

∑N
i=1 ẋi(t) = 0 or equivalently∑N

i=1 xi(t) =
∑N
i=1 xi(0) for all t ≥ 0. Recalling xi(t)→ α

from the proof of part (a), we have Nα =
∑N
i=1 xi(0) and

the consensus value α is computed as α = 1
N

∑N
i=1 xi(0).

Since the closed loop system (7)-(8) is LTI, asymptotic con-
vergence of xi(t) and ûai (t) is equivalent to the exponential
convergence of those signals. This completes the proof. �

According to the proof of Theorem 1, the value of∑N
i=1 γ

−1
i ûai (t) is constant for all t ≥ 0 (i.e. it is invari-

ant). This property is similar to the invariance of the average
value of the node states in the normal average consensus
scheme when there is no input attack [14].

Part (a) of Theorem 1 ensures that, without any knowledge
of the input attack, the network reaches a consensus, though
this consensus is not necessarily the average consensus. Ac-
cording to part (b), if moreover the initial conditions of the
attack estimates ûai are chosen such that

∑N
i=1 ũ

a
i (0) = 0, the

trajectory of the estimated attack signal converges to the ac-
tual attack value and that implies that the agents reach the
average consensus. A particular case where the condition∑N
i=1 ũ

a
i (0) = 0 is satisfied is when attacks do not exist

(uai (t) = 0, i = 1, . . . , N ) and the initial estimates of at-
tacks are also considered as zero (ûai (0) = 0, i = 1, . . . , N ).
This initialization of the compensator ensures that the net-
work converges to the average consensus at least in nominal
condition when there is no attack. This shows that the com-
pensator (5)-(6) maintains the convergence properties of the
original consensus law (2) in attack free condition. Another
particular case is where the agents know the average value of
the attack signals and they choose that average value as the
initial condition ûai (0).

3. SIMULATIONS
In this section, we present numerical simulations to demon-
strate performance of the proposed attack compensation
scheme (5)-(6) versus the pure consensus law (2) (without
attack compensation). In order to simplify presentation of
the results, we consider the simple network demonstrated
in Fig. 1. The initial condition of agent states are given as
x1(0) = 1, x2(0) = −0.75, x3(0) = −0.25 and we choose
the gains as γ1 = γ2 = γ3 = 1.
3.1. Constant attack signals

Assume that the input attacks of ua1(t) = 0.5, ua2(t) = −2,
and ua3(t) = 1.5 are exerted to the system at time t = 10
(s) (the attack signals are zero for t < 10 (s)). The initial
condition of the dynamics (6) is chosen as zero. This ensures
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Fig. 1. The network topology.
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Fig. 2. Performance of the pure consensus law (2) in presence
of a constant attack starting at t = 10 (s).
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Fig. 3. Performance of the proposed compensator (5)-(6) in
presence of a constant attack starting at t = 10 (s). Dashed
lines in the bottom figure show the attack signals.

that the condition
∑3
i=1 ũ

a
i (0) = 0 holds. Fig. 2 and Fig. 3

illustrate the trajectories of agents when the pure consensus
law (2) is used compared to when the proposed compensator
(5)-(6) is employed. For t < 10 (s) where there is no input
attack, both compensators perform such that the agent trajec-
tories converges toward the average consensus value which
is zero in this simulation. However, when attacks occur at
time t = 10 (s), they completely destroy the consensus of the
network with the pure consensus law (2) (Fig. 2), while the
proposed compensator in this paper compensates for the at-
tacks such that the whole networked system states converge
back to the consensus value after a short transient time (Fig.
3). Trajectories of the estimates of attack signals have also
been illustrated by Fig. 3 showing the convergence of those
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Fig. 4. Performance of the proposed compensator (5)-(6)
in presence of time-varying attacks starting at t = 10 (s).
Dashed lines in the bottom figure show the attack signals.

signals to the true values of the attack signals.

3.2. Time-varying attack signals

Although Theorem 1 is only valid when the attack signals
are constant, here we demonstrate that the proposed adaptive
compensator (5)-(6) performs well even if the attack signals
slowly vary with time. We consider the time-varying attack
signals ua1(t) = 0.5+0.3 sin(ωt), ua2(t) = −2−0.15 sin(ωt)
ua3(t) = 1.5 − 0.15 sin(ωt) with ω = 2π

50 and we initiate the
estimates ûai , i = 1, 2, 3 to zero. Notice that we still have∑3
i=1 u

a
i (t) = 0 for all t ≥ 0. Fig. 4 demonstrates that

the proposed attack compensator (5)-(6) yields the states tra-
jectories to converge to a very close neighborhood of the av-
erage consensus value (after a short transient time) even in
the presence of time-varying attacks. Fig. 4 also shows that
the estimate of attack signals provided by (6) track the actual
time-varying attack signals very well.

4. CONCLUSION
We present a novel attack compensation scheme for a net-
work of systems connected through a distributed consensus
law. We propose adaptive corrections such that the network
maintains its desired convergence behavior in presence of at-
tack signals. We present simulation studies demonstrating the
performance of the proposed approach in presence of both
constant and time-varying attacks. This paper shows that even
for consensus networks under constant attacks, the decentral-
ized approach naturally causes theoretical complications that
are not easy to handle without employing rigorous tools from
adaptive and nonlinear systems theory. This contribution pro-
vides strong mathematical basis and paves the way to tackle
more complicated scenarios in future.
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