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Abstract—This paper considers secrecy communication from
a signal processing point of view, and studies the maximal
achievable secrecy degrees of freedoms (S.D.o.F.) of a helper-
assisted Gaussian wiretap channel, consisting of a source, a
legitimate receiver, an eavesdropper and an external helper. Each
terminal is equipped with multiple antennas. We first propose
a cooperative secrecy transmission scheme, and show that it
achieves the maximal secrecy degrees of freedom. We then pro-
pose a heuristic method, through which, we solve analytically the
optimization problem associated with the proposed cooperative
secrecy transmission scheme. By this way, we obtain the maximal
achievable S.D.o.F. and also the precoding matrices which achieve
the maximal S.D.o.F. in closed-form.

I. INTRODUCTION

Cooperative jamming approaches have attracted intense
attention in recent years. However, their advantage comes
from optimally designed input covariance matrices, which are
difficult to obtain due to the nonlinear nature of the problem.
For the single-antenna eavesdropper case, several techniques
have been proposed. For example, in [1]–[3], a suboptimal
but cost efficient null-space jamming scheme that spreads
the jamming signal within the null-space of the legitimate
receiver’s channel is proposed. In [4]–[8], algorithms are
proposed to find the optimal solution using a combination
of convex optimization and one-dimensional search. For the
multi-antenna eavesdropper case, [9] designs the jamming sig-
nals so that they align into a pre-specified jamming subspace
at the legitimate receiver, and span the entire received signal
space at the eavesdropper. In [10], [11], iterative algorithms are
proposed, which alternatively design the transmit covariance
matrix of the legitimate transmitter and the cooperative jam-
mer. Also, the work of [12] provides a closed-form expression
for the structure of the jamming signal covariance matrix that
guarantees secrecy rate larger than the secrecy capacity of the
wiretap channel with no cooperative jamming signals.

To the best of the authors’ knowledge, determining the exact
secrecy capacity of a helper-assisted multi-input multi-output
(MIMO) Gaussian wiretap channel has not been previously
addressed. In order to gain more insight into how the secrecy
capacity of a helper-assisted MIMO Gaussian wiretap channel
behaves, one can examine the rate at which the secrecy
capacity scales with log(P ), i.e., the maximal achievable
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secrecy degrees of freedom (S.D.o.F.) [9], [13]–[17]. The work
of [9] considers the scenario where a large number of helpers
is available, and exploits multiuser diversity via opportunistic
helper selection to enhance secrecy. The works of [15]–[17]
consider special scenarios with certain constraints on antenna
configurations, and determine the maximal achievable S.D.o.F
via real interference alignment and signal space alignment.
In this paper, we aim to determine the maximal achievable
S.D.o.F for a more general MIMO helper-assisted Gaussian
wiretap channel, with no constraints on antenna configurations.
Although we derive the achievable S.D.o.F from a signal pro-
cessing point of view, our S.D.o.F. result matches that of [16],
[17], which was derived from the information theory point of
view. We should note that the work of [14] also investigates the
achievable S.D.o.F from the signal processing point of view.
However, different from our work, the work of [14] makes the
assumption the number of source antennas is greater than the
sum of the number of antennas at the legitimate receiver and
the eavesdropper, and also introduces additional zero-forcing
constraints in order to reduce the degree of difficulty.

To examine the maximal achievable S.D.o.F., we first in-
troduce a cooperative secrecy transmission scheme, which
targets at maximizing the dimension of the subspace spanned
by the message signal received at the legitimate receiver,
under the constraints that the message and jamming signals
lie in different subspaces at the legitimate receiver, but are
aligned into the same subspace at the eavesdropper. We
then give a critical proposition, proving that the proposed
secrecy transmission scheme is sufficient to achieve the max-
imal achievable S.D.o.F.. Consequently, the original S.D.o.F.
maximization reduces to the newly introduced optimization
problem. Subsequently, we solve analytically the newly in-
troduced optimization problem, thus obtaining the maximal
achievable S.D.o.F. of the helper-assisted MIMO Gaussian
wiretap channel in closed-form. Our analytical results uncover
the connection between the maximal achievable S.D.o.F. and
antenna configurations, thus shedding light on how the maxi-
mal achievable secrecy rate behaves.

Notation: AH , tr{A}, rank{A}, and |A| stand for the
hermitian transpose, trace, rank and determinant of the matrix
A, respectively; A(:, j) indicates the j-th column of A while
and A(:, i : j) denotes the columns from i to j of A. span(A)
is the subspace spanned by the columns of A;null(A) denotes
the null space of A; Besides, (a)+ , max(a, 0).
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II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider the MIMO Gaussian wiretap channel with a
cooperative jammer (see Fig.1) where the source, the legit-
imate receiver, the eavesdropper and the external helper are
equipped with Na, Nb, Ne and Nj antennas, respectively.
The source wishes to send its message, x ∼ CN (0, I), to
the legitimate receiver, without being eavesdropped by the
eavesdropper. Towards that objective, the source is aided by a
cooperative terminal, which simultaneously transmits jamming
signal, z ∼ CN (0, I), to confuse the eavesdropper. The signals
received at the legitimate receiver and the eavesdropper can
be respectively expressed as

yd = H1Vx+G2Wz+ nd (1a)
ye = G1Vx+H2Wz+ ne, (1b)

where V and W are the precoding matrices at the source and
the helper, respectively; nd ∼ CN (0, I) and ne ∼ CN (0, I)
represent noise at the legitimate receiver and the eavesdropper,
respectively; G2 ∈ CNb×Nj and H2 ∈ CNe×Nj represent
the helper to legitimate receiver and the helper to eaves-
dropper channel matrices, respectively; H1 ∈ CNb×Na and
G1 ∈ CNe×Na denote the channel matrix from the source
to the legitimate receiver and the source to the eavesdropper,
respectively.

All channels are assumed to be flat fading. We assume that
global channel state information (CSI) is available, including
the CSI for the eavesdropper. This is possible in situations
in which the eavesdropper is normally an active member of
the network, communicating nonconfidential information with
the other parties in other time slots [12]. A minimum-Mean-
Square-Error (MMSE) receiver is considered at the legitimate
receiver and the eavesdropper. The rate at the legitimate
receiver and the eavesdropper can be respectively expressed
as

Rd = log|I+ (I+G2QjG
H
2 )−1H1QaH

H
1 | (2a)

Re = log|I+ (I+H2QjH
H
2 )−1G1QaG

H
1 |, (2b)

where Qa , VVH and Qj , WWH are the transmit
covariance matrices at the source and the helper, respectively.

According to [18], the maximal secrecy rate for transmitting
the message x is given as 1

Cs , max
{Qa≽0,Qj≽0}

Rd −Re

s.t. tr{Qa}+ tr{Qj} ≤ P , (3)

where P is a given total transmit power budget and Cs denotes
the maximal achievable secrecy rate, also known as the secrecy
capacity. Correspondingly, the maximal achievable S.D.o.F. is
given as [13]

s.d.o.f , lim
P→∞

Cs

log P
. (4)

1For a given point {Qa,Qj}, the achieved secrecy rate is (Rd − Re)+.
For ease of exposition, the trivial case with zero achievable secrecy rate is
omitted.
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Fig. 1: MIMO wiretap channel with an external helper

Generally, the optimization problem of (3) is nonconvex. It
is challenging and still an open problem to determine the exact
secrecy capacity. In this paper, we analytically examine the
maximal achievable S.D.o.F. and determine its connection to
antenna configurations, thus offering insights into the secrecy
capacity. In the sequel, we first introduce a cooperative secrecy
transmission scheme, and prove its optimality in the sense of
achieving the maximal S.D.o.F.. Then, by analytically solving
the optimization problem associated with the proposed coop-
erative secrecy transmission scheme, we obtain the maximal
achievable S.D.o.F. and also the precoding matrices which
achieve the maximal S.D.o.F. in closed-form.

III. COOPERATIVE SECRECY TRANSMISSION SCHEME

In the proposed cooperative secrecy transmission scheme,
the subspace spanned by the message signal had no intersec-
tion with the subspace spanned by the jamming signal at the
legitimate receiver, and belongs to the subspace spanned by the
jamming signal at the eavesdropper. In this way, the legitimate
receiver can see an interference-free message signal, such that
Rd scales with log(P ). Simultaneously, the eavesdropper can
only see a distorted version of the message signal, such that
Re converges to a constant as P approaches to infinity. Among
the feasible points, we choose the one which maximizes the
dimension of the subspace spanned by the message signal
received at the legitimate receiver, i.e.,

d , max
{V,W}

rank{H1V} (5a)

s.t. span(G1V) ⊂ span(H2W) (5b)
span(G2W) ∩ span(H1V) = {0}. (5c)

Proposition 1: The maximal achievable secrecy degrees of
freedom, defined in (4), equal to d. That is, s.d.o.f = d.

Proof: We first prove that for any given optimal solu-
tion to (5), {V̄,W̄}, the achieved S.D.o.F is greater than
rank{H1V̄}, thus giving the proof of s.d.o.f. ≥ d. We
then prove that for any given point of {V,W}, we can
always find another feasible point for the problem of (5),
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{V′,W′}, such that rank{H1V
′} is no less than the achieved

S.D.o.F.. Besides, rank{H1V
′} ≤ d by definition. There-

fore, s.d.o.f. ≤ d. Combining these two facts, we conclude
s.d.o.f. = d. Please refer to Appendix E of a longer version
of this paper [19] for more details.

Remark 1: Proposition 1 shows that in the considered helper-
assisted wiretap channel, the proposed transmission scheme is
sufficient to achieve the maximal S.D.o.F.. Thus, to determine
the maximal achievable S.D.o.F., we only need to focus on
solving the optimization problem (5).

IV. A HEURISTIC METHOD TO SOLVE (5)
In this section, we first give a heuristic method which gives

a closed-form feasible point {V̂,Ŵ} to (5), followed by the
derivation of d⋆ , rank{H1V̂} in closed-form. We then prove
that d = d⋆. In this way, we solve (5) analytically.

The key idea of our proposed heuristic method is to use
the antennas available at the source and the helper in a
cooperative way more efficiently. To this end, we first divide
the cooperation between the source and the helper into three
categories, according to the number of signal dimension we
need to spend at the legitimate receiver and helper in order to
achieve one S.D.o.F. Denote a and b as the number of signal
dimension we need at the legitimate receiver and the helper,
respectively. Denote v and w as the beamforming vector at
the source and the helper, respectively. To get one S.D.o.F,
we should design v and w in a cooperative way such that
{v,w} is feasible to (5), i.e., span(G1v) = span(H2w) and
span(H1v)∩span(G2w) = {0}. Then we have the following
three kinds of cooperation.

C1: (a, b) = (1, 0), which is feasible if Na > Ne. Let w = 0, and
choose v such that G1v = 0, then {v,w} is feasible to (5). Besides,
w = 0, thus a = 1 and b = 0.
C2: (a, b) = (1, 1), which is feasible if Nj > Nb and span(G1) ∩
span(H2Γ) ̸= {0}. Here, Γ = null(G2) ∈ CNa×(Nj−Nb). Choose
v and w such that span(G1v) = span(H2w) and G2w = 0, then
{v,w} is feasible to (5). Besides, G2w = 0, thus a = 1 and b = 1.
C3: (a, b) = (2, 1), which is feasible if span(G1)∩ span(H2) ̸= {0}.
Choose v and w such that span(G1v) = span(H2w). Different from
C1 and C2, G1v = 0 and G2w = 0 may not hold true here. Thus, in
order to make {v,w} feasible to (5), we should have a = 2 and b = 1.

Clearly, from C1 to C3, the cooperation efficiency between
the source and the helper decreases since the need for the
number of signal dimension increases. Thus, in the heuristic
method, we check the feasibility of C1 first, followed by C2
and then C3. For more details of our heuristic method, please
refer to Table I. Notice that in Table I, null(G1) returns an
empty matrix when Na ≤ Ne, and the definition of the GSVD
Transform function gsvd(•, •) is given in a longer version of
this paper [19].

In the sequel, we prove that {V̂,Ŵ} is a feasible solution
for (5), and derive the closed-form expression for d⋆. We
distinguish our discussion into four cases, as in Table I.

In Case I and Case II, it is clear that {V̂,Ŵ} is feasible
to (5) and d⋆ = rank{H1V̂} = min{Na, Nb}.

In Case III, for the subcase of d0 + d1 ≥ Nb, V̂ =
[V0,V1] and Ŵ = W1. According to (6), we get

TABLE I: A heuristic method to obtain {V̂,Ŵ} which is
feasible to (5)

Case I: Na ≥ Ne +Nb. Let V̂ = null(G1) and Ŵ = 0.

Case II: Nj ≥ Nb + Ne. Let Ŵ = null(G2) ∈ CNa×(Nj−Nb) and
V̂ be the right singular matrix of H1.

Case III: Na < Ne + Nb and Nb < Nj < Ne + Nb. For a start, let
V0 = null(G1) and d0 = (Na − Ne)+. Secondly, denote H̄2 =
H2Γ ∈ CNe×(Nj−Nb) where Γ = null(G2) ∈ CNa×(Nj−Nb).
Denote Ḡ1 = G1Vc

0 where Vc
0 = null(VH

0 ) ∈ CNa×Ne . Invoking
the GSVD Transform of (H̄H

2 , ḠH
1 ) yields

(Ψ1,Ψ2,D1,D2,X, k3, r3, s3) = gsvd(H̄H
2 , ḠH

1 ). (6)

Subsequently, let d1 = s3, c3 = r3 +Ne − k3, and check
1) If d0 + d1 ≥ Nb, let W1 = ΓΨ1(:, r3 +1 : r3 +Nb − d0) and

V1 = Vc
0Ψ2(:, c3+1 : c3+Nb−d0). Lastly, let V̂ = [V0,V1]

and Ŵ = W1.
2) Otherwise, let W1 = ΓΨ1(:, r3 + 1 : r3 + s3) and

V1 = Vc
0Ψ2(:, c3 + 1 : c3 + s3). Thirdly, denote Vc

01 =
null([V0,V1]H) ∈ CNa×(Na−d0−d1) and G̃1 = G1Vc

01.
Invoking the GSVD Transform of (HH

2 , G̃H
1 ) yields

(Ψ̃1, Ψ̃2, D̃1, D̃2, X̃, k4, r4, s4) = gsvd(HH
2 , G̃H

1 ). (7)

Then let W2 = Ψ̃1(:, r4 + 1 : r4 + d2) and V2 = Vc
01Ψ̃2(:

, c4 +1 : c4 + d2) in which d2 = min{s4, ⌊Nb−(d0+d1)
2

⌋} and
c4 = r4 + (Na − d0 − d1)− k4. Lastly, let V̂ = [V0,V1,V2]
and Ŵ = [W1,W2].

Case IV: Na < Ne+Nb and Nj ≤ Nb. For a start, let V0 = null(G1)
and d0 = (Na−Ne)+. Secondly, denote Vc

0 = null(VH
0 ) ∈ CNa×Ne

and Ḡ1 = G1Vc
0. Invoking the GSVD Transform of (HH

2 , ḠH
1 ) yields

(Ψ1,Ψ2,D1,D2,X, k4, r4, s4) = gsvd(HH
2 , ḠH

1 ). (8)

Then let W2 = Ψ1(:, r4 + 1 : r4 + d2) and V2 = Vc
0Ψ2(:, c4 + 1 :

c4 + d4) in which d2 = min{s4, ⌊Nb−d0
2

⌋} and c4 = r4 +Na − k4.
Lastly, let V̂ = [V0,V2] and Ŵ = W2.

span(G2W1) = {0} and span(H2W1) = span(G1V1).
In addition, G1V0 = 0. So, span(H2Ŵ) = span(G1V̂)
and span(H1V̂)

∩
span(G2Ŵ) = {0}, which indicate that

{V̂,Ŵ} is feasible to (5). Furthermore, V0 is orthogonal with
V1 by definition, thus

d⋆ =rank{[V0,V1]} = rank{V0}+ rank{V1} = Nb.

For the subcase of d0 + d1 < Nb, V̂ = [V0,V1,V2] and
Ŵ = [W1,W2]. As in the subcase of d0+d1 ≥ Nb, G1V0 =
0, span(G2W1) = {0} and span(H2W1) = span(G1V1).
In addition, according to (7), span(H2W2) = span(G1V2)

and d2 = min{s4, ⌊Nb−(d0+d1)
2 ⌋}. Thus, span(H2Ŵ) =

span(G1V̂) and span(H1V̂)
∩

span(G2Ŵ) = {0}, which
indicate that {V̂,Ŵ} is feasible to (5). Furthermore, [V0,V1]
is orthogonal with V2 by definition, thus

d⋆ =rank{[V0,V1,V2]} = rank{[V0,V1]}+ rank{V2}
=rank{V0}+ rank{V1}+ rank{V2}
=min{d0 + d1 + d2, Na}.

In Case IV, V̂ = [V0,V2] and Ŵ = W2. Accord-
ing to (8), span(H2W2) = span(G1V2), which, together
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TABLE II: Summary of the closed-form results on s.d.o.f.

Inequalities on the number of antennas at terminals s.d.o.f.

Na ≥ Ne +Nb

Nj ≥ Ne +Nb min{Na, Nb}

2Nb +Ne −Nj ≤ Na < Ne +Nb

Nb < Nj < Ne +Nb

Nb +Ne −Nj < Na < 2Nb +Ne −Nj Na +Nj − (Nb +Ne) + min{s, ⌊ 2Nb+Ne−Na−Nj

2
⌋}

Nb < Nj < Ne +Nb s = min{Nb +Ne −Nj , Ne}+min{Nj , Ne} −Ne

Ne < Na < Ne +Nb, Nj ≤ Nb Na −Ne +min{s, ⌊Nb+Ne−Na
2

⌋}, s = min{Nj , Ne}

Na ≤ Nb +Ne −Nj , Nb < Nj < Ne +Nb min{s, ⌊Nb
2
⌋}

Na ≤ Ne, Nj ≤ Nb s = min{Na, Ne}+min{Nj , Ne} −min{Na +Nj , Ne}

with G1V0 = 0, gives span(H2Ŵ) = span(G1V̂). In
addition, span(H1V̂) ∩ span(G2Ŵ) = {0} due to d2 =
min{s4, ⌊Nb−d0

2 ⌋}. Thus, {V̂,Ŵ} is feasible to (5). Further-
more, V0 is orthogonal with V2 by definition, thus

d⋆ =rank{[V0,V2]} = rank{V0}+ rank{V2}
=min{d0 + d2, Na}.

Summarizing the above four cases, we can rewrite d⋆ into
a more compact form as follows:

d⋆ = min{d⋆0 + d⋆1 + d⋆2, Na, Nb}, (9)

in which

d⋆0 = (Na −Ne)
+ (10a)

d⋆1 = (min{Na, Ne}+ (Nj −Nb)
+ −Ne)

+ (10b)

d⋆2 = min{s, (⌊Nb − (d⋆0 + d⋆1)

2
⌋)+}. (10c)

Here, s , min{Na − (d⋆0 + d⋆1), Ne} + min{Nj , Ne} −
min{Na − (d⋆0 + d⋆1) +Nj , Ne}.

Proposition 2: On d defined in (5), we have d = d⋆.
Proof: By definition, d ≥ d⋆ holds true. On the other

hand, for any feasible point of the problem of (5), {Ṽ,W̃},
rank{H1Ṽ} ≤ d⋆. Therefore, d ≤ d⋆. Combining these two
facts, we conclude d = d⋆. Due to the space limitation, please
refer to Appendix F of a longer version of this paper [19] for
more details.

Remark 2: According to Proposition 2, it is straight-forward
that the feasible solution {V̂,Ŵ} given in Table I is also the
optimal solution to (5).

V. MAXIMAL ACHIEVABLE S.D.O.F.

In this section, we give the maximal achievable S.D.o.F.
and also the precoding matrices which achieve the maximal
S.D.o.F. in closed-form.

Theorem 1: Consider a helper-assisted MIMO Gaussian
wiretap channel, as depicted in Fig.1,

s.d.o.f. = d⋆, (11)

where d⋆ is given in (9). Moreover, the precoding matrices
{V̂,Ŵ} given in Table I achieve the maximal S.D.o.F..

Proof: Combining Proposition 1 and Proposition 2, it is
clear that s.d.o.f. = d⋆. This completes the proof.

Remark 3: To gain more insight into s.d.o.f., we give Table
II which clarifies the connection of s.d.o.f. to the antenna
configurations.

Corollary 1: The feasible point {V̂,Ŵ} for the optimiza-
tion problem of (5), given in Table I, serves as a S.D.o.F.-
optimal solution to the secrecy rate maximization problem
in (3). It achieves the maximal S.D.o.F.. Moreover, Table II
clarifies the maximal achievable S.D.o.F. of a helper-assisted
MIMO Gaussian wiretap channel, and reveals its specific
connection to the number of antennas at each terminal.

Proof: With Theorem 1, it is straight-forward to arrive at
these conclusions. This completes the proof.

Corollary 2: When Nb > 1, the maximal achievable
S.D.o.F. of a helper-assisted MIMO Gaussian wiretap channel
is zero if and only if Ne ≥ Na+Nj . When Nb = 1, the max-
imal achievable S.D.o.F. of a helper-assisted MIMO Gaussian
wiretap channel is zero if and only if Ne ≥ Na +Nj − 1.

Proof: According to Table II, it is easy to verify that
s.d.o.f. = 0 can only happen when Na ≤ Ne and Nj ≤
Ne+Nb−Na. With these two inequalities, we then distinguish
our discussion into three subcases, and give the proof. For
more details, please refer to Appendix G of our paper [19].

VI. CONCLUSION

We have examined maximal achievable secrecy degrees of
freedoms (S.D.o.F.) of a MIMO Gaussian wiretap channel,
where a multi-antenna external helper is available. We have
addressed the S.D.o.F. maximization analytically. Specifically,
we have obtained an analytical S.D.o.F.-optimal solution to
the secrecy rate maximization problem, based on which, we
have obtained the maximal achievable S.D.o.F. in closed-form.
These results uncovered the connection between the maximal
achievable S.D.o.F. and antenna configurations, thus shedding
light on how the secrecy capacity of a helper-assisted MIMO
Gaussian wiretap channel behaves. Our analytical results prove
that for the special case of single-antenna legitimate receiver, a
S.D.o.F. of 1 can be achieved if and only if Ne < Na+Nj−1;
for the case of multi-antenna legitimate receiver, the maximal
achievable S.D.o.F. is zero if and only if Ne ≥ Na +Nj .
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