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ABSTRACT

This paper is concerned with optimal multi-period scheduling of dis-
tributed energy resources (DERs) dispersed in electricity distribution
networks. DERs considered here comprise programmable loads with
the ability to adjust their real power, photovoltaic (PV) generators
with the ability to inject or absorb reactive power, as well as storage
units (batteries) that can be charged or discharged and also offer the
capability of reactive power control. A convex program is formu-
lated to jointly schedule DERs over a time horizon. The objective to
be minimized is a weighted combination of energy losses on the lines
and cost of power provision offset by end-user satisfaction. A decen-
tralized solver based on the alternating direction method of multipli-
ers (ADMM) is developed, featuring closed-form updates per node
and relying only on communication between neighboring nodes.

Index Terms— Distributed algorithms, electricity distribution
networks, optimization methods, photovoltaic generators, storage

1. INTRODUCTION

Electricity distribution networks are envisioned to accommodate a
variety of devices, ranging from programmable loads and dispersed
renewable generation, such as photovoltaic (PV) generators, to elec-
tricity storage units (batteries). Programmable loads are instrumental
in shaping the rising demand, and renewable generation integrated
at distribution networks plays a significant role in meeting future de-
mand using clean energy and bypassing transmission network con-
gestion. Batteries meanwhile offer the capability of storing energy in
times of excess generation and returning it in times of energy short-
age. Programmable loads, distributed generation, and distributed
storage are collectively called distributed energy resources (DERs).

Optimal scheduling of DERs offers opportunities for reliable
and economic operation of electricity distribution networks via min-
imization of network energy losses or power provision costs, and
maximization of user satisfaction. Each DER is characterized by
different control capabilities. Specifically, the real power consump-
tion of programmable loads can be adjusted, but the corresponding
reactive power is determined via the load’s power factor. PV units
generate power based on solar irradiance, upon which the system
designer has no control, but they may also inject or absorb reactive
power, which is a decision variable [1]. Last but not least, storage
units may be charged or discharged by consuming or delivering real
power, and can simultaneously adjust their reactive power [2]. The
chief challenge is to come up with scalable algorithms to leverage
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and coordinate the DER capabilities, in order to achieve network-
wide objectives, while respecting the power flow equations.

To addresses the aforementioned challenge, this paper formu-
lates a convex optimization problem to optimally and jointly sched-
ule DERs, and develops a decentralized solver based on the alter-
nating direction method of multipliers (ADMM). Prior work and the
contributions of this paper are listed next.

1.1. Relation to prior work and contributions

The development of decentralized algorithms for optimal reactive
power compensation from PV units and the coordination with user
programmable loads has received wide attention over the last years,
see e.g., [1, 3–10] for representative works. Coordination with stor-
age is nevertheless not explored in the aforementioned works. On the
other hand, the coupling of storage with renewable energy sources
has been previously considered, and offline or online algorithms
for optimal storage operation have been developed [11–13]. These
works do not account for the physical network; as such, reactive
power compensation and voltage specifications are not considered.
The impact of storage on transmission networks is the theme of [14]
and [15], without considering reactive power compensation by stor-
age or PV units, or developing decentralized solvers.

The first contribution of the paper is to formulate a multi-period
optimal scheduling problem for coordination of programmable
loads, PV units and batteries, with the latter two providing reactive
power compensation. The objective is to minimize system thermal
losses and the cost of power import into the distribution system,
offset by user satisfaction modeled via utility functions. A linear
approximation of the power flow equations, termed simplified Dis-
tFlow (see e.g., [6, 16, 17]), is utilized, and the overall problem
amounts to a convex quadratically constrained quadratic program
(QCQP). The second contribution is to develop a computationally ef-
ficient and scalable decentralized solver based on ADMM featuring
closed-form updates and communication only between neighboring
nodes. Related decentralization techniques have been reported in [9]
and [10], which are extended here to account for storage devices
modeled via dynamical equations over a time horizon. Account-
ing for reactive power from storage necessitates the closed-form
solution of a QCQP in 2 variables, which is also derived here.

The remainder of the paper is organized as follows. Section 2
formulates the optimal scheduling problem. Section 3 develops the
decentralized solver and outlines the communication requirements.
Section 4 provides numerical tests, and Section 5 gives pointers to
future directions.

2. PROBLEM FORMULATION

An electricity distribution feeder modeled by a line network is shown
in Fig.1. Node 0 represents the substation, while nodes 1, ..., N−
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Fig. 1: Line network.

represent the users. Each User m = 1, ..., N − 1 will have a con-
trollable load, PV generation and a battery to store power generated
by PV. The scheduling horizon S = 1, ..., T , where each time slot
has a duration δ and is generically denoted by t.

2.1. User Load Model

Let pcm,t and qcm,t be the real and reactive power consumption at
node m at slot t. Let PFmε(0, 1] denote the power factor corre-
sponding to the load of userm. Residential loads operate at constant
power factors, and are of inductive nature, that is, qcm,t ≥ 0. The
reactive power consumption at node m and slot t is related to the
real power consumption at node m and slot t via PFm as follows

qcm,t = pcm,t

√
1/PF2

m − 1. (1)

The real power consumption pcm,t is also constrained by lower and
upper bounds, i.e.,

pcm,t,min ≤ pcm,t ≤ pcm,t,max. (2)

2.2. PV Model

Each user m is generically considered to have a PV generation unit;
pPV
m,t and qPV

m,t represents the real and reactive power generated by
PV unit at node m and slot t. The quantities ppvm,t will be obtained
through a forecast, and hence will be considered given constants in
the optimization problem. On the other hand, qpvm,t is a decision
variable, and is constrained as follows (see e.g., [1]):

|qPV
m,t| ≤

√
(SPV

m,max)2 − (pPV
m,t)

2. (3)

Here, SPV
m,max is the maximum apparent power of the PV at nodem,

and is a hardware-specific constant.

2.3. Storage Model

Each user also has a battery that can be charged or discharged. With
bm,t denoting the stored energy in the battery at node m and at the
beginning of slot t, the equation modeling the storage dynamics is

bm,t+1 = bm,t + δpstm,t. (4)

The variable pstm,t denotes the real power at which the battery is
charged or discharged in slot t, depending on whether pstm,t ≥ 0 or
pstm,t ≤ 0, respectively, and is constrained by charging/discharging
limits as follows:

−pstm,max ≤ pstm,t ≤ pstm,max. (5)

Furthermore, energy storage systems have finite capacity bm,max,
which constraints the energy stored at every slot:

0 ≤ bm,t ≤ bm,max. (6)

Note that bm,1 is the energy stored at the beginning of slot 1, and
is considered known, while bm,T+1 is the energy stored at the end of
the T -slot scheduling period. The latter could be kept above a given
threshold b̄m (where 0 ≤ b̄m ≤ bm,max), to achieve reliable and
efficient energy scheduling for the next T -slot scheduling period:

bm,T+1 ≥ b̄m. (7)

Storage systems may also have the capability to inject or absorb
reactive power, as in the case of PVs [2]. This reactive power is
denoted by qstm,t, and is constrained in a fashion similar to (3) by

(pstm,t)
2 + (qstm,t)

2 ≤ (Sst
m,max)2 (8)

where Sst
m,max is the maximum apparent power capability by the

battery. Note that while (3) becomes a linear constraint, (8) is a
(convex) quadratic constraint.

2.4. Power Flows

As the real and reactive power generation or consumption of PV
changes from user to user at each time period, the power flows in
the distribution network will also be time dependent. Let Pm,t and
Qm,t be the real and reactive power flows from node m to m+ 1 at
slot t; and um,t be the squared magnitude of voltage phasor at node
m at slot t. The power flows at the lines, the nodal voltages, and
the nodal power injections are related via the power flow equations
which are in general nonconvex. A convex approximation called
simplified DistFlow is used in this paper as follows:

Pm+1,t = Pm,t − (pstm+1,t + pcm+1,t − pPV
m+1,t) (9a)

Qm+1,t = Qm,t − (qcm+1,t − qPV
m+1,t − qstm+1,t) (9b)

um+1,t = um,t − 2(rmPm,t + xmQm,t) (9c)

where t = 1, . . . , T , m = 0, . . . , N − 1, with the conditions

PN,t = 0, QN,t = 0, u0,t = V 2
0 . (10)

The real and reactive power exiting node N is zero because N is the
last node in the network, while V0 is the constant voltage magnitude
at the substation. Also, rm and xm are respectively the resistance
and reactance of the line connecting nodes m and m+ 1.

2.5. Objective Function

The objective function to be minimized has three parts: 1) the cost
of the real power imported in the distribution system, 2) negative of
the user utility function, and 3) the thermal losses over the network.

Specifically, the cost of the real power to operate the distribu-
tion system is given by atP0,t where at is the price of one unit of
power, and P0,t is the power flowing from substation into the net-
work. Prices (at)

T
t=1 are known in advance of the horizon; note also

that P0,t can be positive or negative. In addition, a utility function
of pcm,t is introduced in order to account for the end-user satisfac-
tion. While any concave utility function could be used, a linear form
Km,tp

c
m,t is adopted here, where the coefficient is allowed to vary

with time. Finally, the thermal losses on the lines of the network
in the adopted power flow model can be approximated by the term∑

m(P 2
m,t +Q2

m,t)/V
2
0 . Putting everything together, the optimal

DER scheduling problem is a convex QCQP expressed as

min

T∑
t=1

atP0,t−
N∑

m=1

T∑
t=1

Km,tp
c
m,t +

N−1∑
m=0

T∑
t=1

rm(
P 2
m,t +Q2

m,t

V 2
0

)

(11)
subject to (1)–(10).

Objective component weights can be absorbed in at and Km,t.
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3. DECENTRALIZED ALGORITHM

In this section, a decentralized solver for (11) based on ADMM
is developed. Recall that ADMM requires writing the optimiza-
tion problem as min f(x) + g(z) subject to a coupling constraint
Ax + Bz = c and possibly individual constraints for x and z [18].
Properly designed auxiliary variables need to be introduced in order
to write (11) in the aforementioned form, and simultaneously enable
closed-form per node updates. This task is undertaken in the ensu-
ing subsection. Subsection 3.2 briefly describes the closed-form up-
dates, and Subsection 3.3 outlines the required neighbor-to-neighbor
communication for algorithm implementation.

3.1. Equivalent problem

Auxiliary variables annotated with tilde or hat are introduced in the
following problem, which is easily seen to be equivalent to (11)
thanks to the coupling constraints.

min
T∑

t=1

atP0,t −
N∑

m=1

T∑
t=1

Km,t(p̃cm,t)

+

N−1∑
m=0

T∑
t=1

rm
P 2
m,t +Q2

m,t

V 2
0

(12a)

subject to
Coupling Constraints

m = 0, ..., N − 1, t = 1, ..., T


P̃m,t = Pm,t

P̃m,t = P̂m,t

Q̃m,t = Qm,t

Q̃m,t = Q̂m,t

(12b)

m = 1, ..., N, t = 1, ..., T

{
ũm,t = um,t

ũm,t = ûm,t

(12c)

m = 1, ..., N, t = 1, ..., T


p̃cm,t = pcm,t

p̃stm,t = pstm,t

q̃stm,t = qstm,t

q̃PV
m,t = qPV

m,t

(12d)

b̃m,t = bm,t for m = 1, ..., N, t = 2, ..., T + 1 (12e)

Individual Constraints

Pm,t = P̂m−1,t − (pstm,t + pcm,t − pPV
m,t) (12f)

Qm,t = Q̂m−1,t − (pcm,t

√
1

PF2 − 1− qPV
m,t − qstm,t) (12g)

ûm+1,t = um,t − 2(rmPm,t + xmQm,t) (12h)

bm,t+1 = bm,t + δpstm,t (12i)

|q̃PV
m,t| ≤

√
(SPV

m,max)2 − (pPV
m,t)

2 (12j)

(p̃stm,t)
2 + (q̃stm,t)

2 ≤ (Sst
m,max)2 (12k)

(1− ε)2V 2
0 ≤ ũm,t ≤ (1 + ε)2V 2

0 (12l)

0 ≤ b̃m,t ≤ bm,max (12m)

−pstm,max ≤ p̃stm,t ≤ pstm,max (12n)

b̄m ≤ b̃m,T+1 ≤ bm,max (12o)
pcm,t,min ≤ p̃cm,t ≤ pcm,t,max (12p)

Table 1: Coupling Constraints and Associated Lagrange Multipliers

P̃m,t = Pm,t P̃m,t = P̂m,t Q̃m,t = Qm,t Q̃m,t = Q̂m,t

λm,t λ̂m,t µm,t µ̂m,t

ũm,t = um,t ũm,t = ûm,t p̃cm,t = pcm,t p̃stm,t = pstm,t

γm,t γ̂m,t ωm,t η̂m,t

q̃stm,t = qstm,t q̃PV
m,t = qPV

m,t b̃m,t = bm,t

νm,t θm,t ζm,t

m − 1 m m + 1

 𝑃𝑚−1,𝑡  𝑢𝑚+1,𝑡

Prior to 

𝒙-update

m − 1 m m + 1

Prior to 

𝒛-update

(  𝜆𝑚,𝑡,  𝜇𝑚,𝑡)

(  𝑃𝑚,𝑡,  𝑄𝑚,𝑡) 𝑢𝑚,𝑡

 𝛾𝑚,𝑡 𝑄𝑚−1,𝑡

Fig. 2: Communication requirements per iteration of ADMM solver

The optimization variables of the previous problem are orga-
nized into vectors xm and zm, corresponding to nodes m =

0, 1, . . . , N . Variable xm includes Pm,t, Qm,t, um,t, P̂m−1,t,
Q̂m−1,t, ûm+1,t, pcm,t, qPV

m,t , pstm,t, qstm,t, bm,t for all t; while zm
collects p̃cm,t, q̃

PV
m,t, p̃

st
m,t, q̃

st
m,t, b̃m,t for all t. Upon defining the

equivalent problem, Lagrange multipliers are assigned to coupling
constraints as listed in Table 1, and then the augmented Lagrangian
function can be formed, which is not shown here for brevity.

3.2. Closed-form updates

The ADMM updates proceed with minimization with respect to
x keeping z constant, and vice versa. Writing out the augmented
Lagrangian function, it is not hard to see that the update for xm

amounts to a quadratic program subject to linear equality constraints,
which has a a well-known closed-form solution (see e.g., [10]).

The zm-update breaks down into two types of updates. Firstly,
the update for each of P̃m,t, Q̃m,t, ũm,t, p̃

c
m,t, q̃

PV
m,t, b̃m,t becomes

a quadratic program in a single variable, possibly with a lower and
upper bound, and thus also has a closed-form solution.

Secondly, the update for p̃stm,t and q̃stm,t is a QCQP in two vari-
ables, which is stated as follows.

min
p̃m,t,q̃m,t

ρ

2
(p̃stm,t)

2 +
ρ

2
(q̃stm,t)

2 − p̃stm,t(ρp
st
m,t + ηm,t)

− q̃stm,t(ρq
st
m,t + νm,t) (13a)

subject to:

(p̃stm,t)
2 + (q̃stm,t)

2 ≤ (Sst
m,max)2 (13b)

− pstm,max ≤ p̃stm,t ≤ pstm,max. (13c)

In order to come up with the solution of the previous problem, let κ
be the Lagrange multiplier for (13b); κ̄, κ for (13c). The KKT condi-
tions for problem (13) amount to the following system of equations
in variables (p̃stm,t, q̃

st
m,t, κ, κ̄, κ):

(ρ+ 2κ)p̃stm,t + κ̄− κ = ρpstm,t + η (14a)

(ρ+ 2κ)q̃stm,t = ρqstm,t + ν (14b)

κ[(p̃stm,t)
2 + (q̃stm,t)

2 − (Sst
m,max)2] = 0 (14c)

κ̄(−pstm,max + p̃stm,t) = 0 (14d)

κ(−pstm,max − p̃stm,t) = 0. (14e)
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Fig. 3: User PV profiles pPV
m,t for all m.
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Fig. 4: PV-provided reactive power qPV
m,t for all m.

The optimal solution of (13) is obtained by enumerating the eight
possible combinations of κ, κ̄, κ being zero or not. For example, if
κ, κ̄, κ are all zero, the corresponding solution can be found from
(14a) and (14b) for p̃stm,t and q̃stm,t. If κ 6= 0 and κ̄, κ are zeros,
the corresponding solution can be found by using (14c). Among the
eight corresponding solutions, the one that has the least objective
value will be the optimal p̃stm,t and q̃stm,t.

3.3. Communication requirements

Node m is responsible for maintaining and updating xm, zm, and
the Lagrange multipliers indexed by m. Fig. 2 shows the commu-
nication requirements to this end. Prior to xm-update, node m re-
ceives P̃m−1,t and Q̃m−1,t from node m − 1; and ũm+1,t from
node m + 1. Likewise, prior to zm-update, node m receives P̂m,t

and Q̂m,t from node m + 1; and ûm,t from node m − 1. Fig. 2
also depicts the required exchange of Lagrange multipliers. Due to
the closed-form per-node updates and the communication between
neighboring nodes, the developed solver is computationally efficient
and scalable.

4. NUMERICAL TESTS

Numerical tests are performed on a radial distribution network with
N = 25 nodes. The substation voltage is fixed at 7.2 kV, and the line
resistance and reactance values are 0.066 Ω and 0.076 Ω, respec-
tively. The maximum voltage deviation per node is set to ε = 0.03.

The NREL Solar Power Data for Integration Studies from April
2006 4th are used to generate the PV profile [19]. The time horizon
extends from 8:00 AM until 9:00 AM with time step δ = 5 minutes,
which corresponds to T = 13 as the length of the time horizon.
The profile of PV injections {pPV

m,t}Mm=1 for all t is generated as a
Gaussian random vector with mean specified by the NREL data and
covariance matrix C with exponentially decreasing entries Cij =

e−0.5|i−j| to model spatial correlation; see e.g., [20] for a related
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Fig. 5: Battery charge and discharge profiles pstm,t for all m.
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Fig. 6: Battery-provided reactive power qstm,t for all m.

model. The resulting profiles are scaled so that the peak PV genera-
tion is 2 kW, and are depicted in Fig. 3.

The maximum apparent power capacity of the PV inverter is se-
lected to be SPV

m,max = 2.2 kVA. The storage capacity is set to
bm,max = 4 kWh while the minimum energy stored required at the
beginning of the next horizon is b̄m = 0.25 bm,max for all m. The
maximum real power that can be generated or consumed in the bat-
tery is pstm,max = 0.26 kW. The interval for user real and reactive
power consumption is [pcm,t,min, p

c
m,t,max] = [4 kW, 6 kW], while

the user utility function coefficient Km,t is increasing linearly from
0.001 to 0.005 across t for all m.

The optimal reactive power provided by the PV units is given in
Fig. 4. Fig. 5 depicts the battery charge and discharge profiles, while
the battery-provided reactive power is illustrated in Fig. 6. The linear
increase of Km,t here implies that the user load is increasing across
time. The optimal schedule entails initially charging the battery, and
then discharging it, as illustrated in Fig. 5, in order to compensate
for the increased demand towards the end of the horizon and simul-
taneously satisfy the terminal constraint for the storage [cf. (7)].

Fig. 4 reveals that as time evolves (and the user load increases),
more PV units provide reactive power support. But as the PV gen-
eration ramps up at the end of the horizon, the capability of the PV
units to provide reactive power decreases [cf. (3)], and additional
reactive power is injected by the storage units, as depicted in Fig. 6.

5. FUTURE DIRECTIONS

This work can be expanded along several avenues. First, the uncer-
tainty in PV generation can be accounted for, as opposed to relying
on forecasts here. Another direction is the incorporation of tree net-
works, which constitute a generalization of the line network as a
model for electricity distribution systems. It is also worth investigat-
ing the multi-period optimal scheduling problem with the second-
order cone relaxation of the power flow equations, which is a more
accurate model than the linear power flows adopted here.
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