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ABSTRACT
State estimation is an essential part of energy management
system in smart grid as it is a basis for many of the associated
management and control processes. In this paper, we present
a decentralized state estimation approach, based on consensus
optimization and the alternating direction method of multipli-
ers, that is robust against certain harsh class of false data in-
jection schemes. The proposed scheme provides a reliable es-
timate of the global system state in a distributed manner even
if the system is regionally unobservable to some regional con-
trollers, but globally observable across regions. The scheme
also accommodates different communication network topolo-
gies for a given power network. We assess the performance of
the presented schemes on IEEE 14 and 118 bus test systems.

Index Terms— State Estimation, Smart Grid, ADMM

1.INTRODUCTION
Smart grid as the next generation of power grid utilizes sensed
grid data to automatically improve the stability, efficiency,
economics, and reliability of production and distribution of
electricity. The smart grid uses communications capability to
collect data and learn about the behavior of consumers and
suppliers [1]. State estimation enables most processes in an
energy management system of a smart grid. As such, it is
instrumental in preserving sustainability and increasing the
efficiency of power system operation. Owing to communi-
cation deficiencies, difficulty in computation and reliability
issues, decentralized state estimation is highly essential [2].
False data injection in smart grids by potentially malicious
users would lead to incorrect state estimation [3]. Specifi-
cally, it may result in energy theft from consumers, device
malfunction during power generation and incorrect dispatch-
ing for the distribution procedure [4]. Therefore, a decentral-
ized state estimation that is reliable and robust against false
data injection is instrumental in the smart grid; and that is the
research problem we here investigate.
Several approaches have been proposed for distributed state

estimation in power networks, that may be categorized as
partially distributed, hierarchical or fully distributed. A sur-
vey on hierarchical state estimation is presented in [5]. In [6]
and [7] two-level state estimation for multi-area power sys-
tems is studied. In [8], schemes for two-level and decentral-
ized state estimation are surveyed. These hierarchical meth-
ods need a coordinating center for information aggregation,
and local observability for state estimation in each region [9].
In [10] a fully distributed state estimation scheme based on
first order diffusion algorithms is proposed. The algorithm es-

timates the entire state of the network in each region with low
computational complexity per iteration. Nonetheless, it re-
quires a large number of iterations to achieve a desired quality
estimation. In [11], another distributed algorithm is proposed,
which in each region only estimates the corresponding state
variables. The scheme is developed for robust performance
in presence of sparse false data. This algorithm converges
in a smaller number of iterations in comparison with [10],
however in the assumed setting, the communication network
topology is dictated by the power network topology.

The false data injection security problem in smart grids is
presented in [3] and classic approaches to handle it is re-
viewed in [1]. In [12] distributed joint anomaly detection
and state recovery based on consensus and innovation is pro-
posed. The security problem of manipulating the information
exchanged between regions in order to hinder the conver-
gence of the distributed algorithm is studied in [13]. In [14],
the problem of constructing sparse vectors for an unobserv-
able anomaly in centralized and distributed form has been
formulated.

In this paper, we consider the state estimation problem in
smart grid as a consensus optimization problem and then
present a fully decentralized solution based on Alternating
Direction Method of Multipliers (ADMM). The solution,
dubbed Decentralized Consensus-based State Estimation
algorithm (DCSE) estimates global state variables in each
region without the need for local observability. We then
consider a malicious third party who injects false data into
the measurements. We first model the anomaly due to false
measurements in smart grid and then present an anomaly
resilient scheme referred to as the Resilient Decentralized
Consensus-based State Estimation (RDCSE). The proposed
scheme jointly detects the anomaly and estimates the states
in a decentralized manner. Finally we validate the presented
schemes by simulation on IEEE 14 and 118 bus systems and
comparison with [10].

2.CONSENSUS-BASED STATE ESTIMATION
In an electric power grid, assuming DC power flow, the con-
trol center needs to monitor the voltage phase angles of all
buses to manage the network. In this regard the control cen-
ter collects the readings from remote electric meters to esti-
mate the system operation state. In Supervisory Control and
Data Acquisition (SCADA) systems, specific measurement
data include branch active power flows and bus active power
injection [15]. On the other hand Phasor Measurement Units
(PMU) provide accurate synchronous phasor measurements
for geographically dispersed nodes in power networks [16].
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PMU measurements have a linear relation with the state vari-
ables. State variables in this case are voltage magnitude and
angle of all buses. State estimation by DC power flow, in
SCADA systems or using PMUs, is a convex optimization
problem. In the following, we first review the power system
state estimation problem in centralized form, and then present
a decentralized solution.

2.1.Centralized State Estimation
State estimation is the process of estimating unknown state
variables from measurement variables. Let x = (x1, ..., xN ),
x ∈ RN and z = (z1, ..., zM ), z ∈ RM be state and measure-
ment variables, respectively. We have

z = h(x) + e (1)
where h(x) = (h1(x1, x2, ..., xN ), ...,hM (x1, x2, ..., xN ))
and e is the measurement noise. The function h(x) is in gen-
eral nonlinear, but assuming DC power flow or using PMU
measurements for state estimation, it becomes linear and as
such we can write (1) as follows

z = Hx + e, (2)
where H is the Jacobean matrix of h(x). State variables can
be estimated using the following optimization problem

min
x

1

2
∥z − Hx∥22. (3)

2.2.Decentralized State Estimation
In this setting, the measurements are assumed to be dis-
tributed in R regions, and the purpose is to estimate the com-
plete set of state variables in a decentralized manner. This is
while there is no centralized controller and the estimation is
to be accomplished by collaboration of regional controllers.
We can rewrite (2) as follows

[ z1 z2 ... zR ]T = [ H1 H2 ... HR ]Tx+
[ e1 e2 ... eR ]T

(4)
where zi, Hi and ei are the measurement vector, Jacobean
matrix and the measurement error corresponding to region i.
Moreover, we assume that power system is globally observ-
able. If we consider fi = 1

2∥zi − Hix∥22 as the objective func-
tion of region i ∈ {1, ..., R}, the centralized objective func-

tion is
R∑
i=1

fi =
R∑
i=1

1
2∥zi − Hix∥22 =1

2∥z − Hx∥22. Hence, the

desired optimization problem is expressed as follows

min
x

R∑
i=1

1

2
∥zi − Hix∥22. (5)

We aim to formulate the state estimation problem in the form
of a consensus optimization in which several agents try to
minimize the sum of their local objective functions with re-
gard to a variable set which is common between agents. As
we shall show in the sequel, the proposed solution is fully
decentralized without a central coordinating node, and with
high accuracy and fast rate of convergence. There are sev-
eral methods for decentralized consensus optimization, such
as distributed sub-gradient descent algorithms, dual averaging
methods and the ADMM. Among these, for closed proper and
convex objective functions, the ADMM has fast convergence

in many applications [17] and converges to the centralized so-
lution [18]. As we assumed global observability, the ADMM
solution for the decentralized problem is unique. Hence, there
is no constraint on local observability for convergence.
In the following, we convert the problem in (5) to the ADMM

format and solve it in a distributed manner in line with [17].
We have

min
{xi,yij}

R∑
i=1

1
2∥zi − Hixi∥22

s.t. xi = yij , xj = yij , ∀(i, j) ∈ E

(6)

where E is the graph of collaboration network between re-
gional controllers and yij’s are auxiliary variables, which im-
pose the constraints for neighboring regions. The collabora-
tion network identifies the nodes cooperating nodes in each
iteration. The problem (6) can now be rewritten in the stan-
dard ADMM format as follows

min
x,y

f(x) + p(y) s.t Ax + By = 0 (7)

where f(x) is equal to
R∑
i=1

fi and p(y) = 0, x and y are con-
catenation of xi and yij , respectively. A is a matrix based
on topology of collaboration network and it consist of two
parts [A1;A2] such that A1 + A2 is the extended unoriented
incidence matrix. B is a matrix consisting of two identical
parts [−I;−I], where I is identity matrix. The augmented
Lagrangian of (7) is expressed as follows

Lx,y,λ =
R∑
i=1

1

2
∥zi − Hix∥22+λT (Ax+By)+

µ

2
∥Ax + By∥22

(8)
where λ is the Lagrange multiplier and µ is a constant pa-
rameter. Thus, the ADMM steps based on the augmented La-
grangian are as follows

xk+1 = argmin
x

R∑
i=1

1
2∥zi − Hix∥22 + λkT

(Ax + Byk)+

µ
2

∥∥Ax + Byk
∥∥2
2

yk+1 = argmin
y

R∑
i=1

1
2

∥∥zi − Hixk+1
∥∥2
2
+ λkT

(Axk+1 + By)+

µ
2

∥∥∥Axk+1 + By
∥∥∥2
2

λk+1 = λk + µ(Axk+1 + Byk+1)
(9)

The above steps can be simplified [17] into the following two
steps

xk+1
i = (HT

i Hi + 2µ |Ni| I)
−1[

−σk
i + HT

i zi + µ

(
|Ni| xki +

∑
j∈Ni

xkj

)]
σk+1
i = σk

i + µ

(
|Ni| xk+1

i −
∑

j∈Ni

xk+1
j

)
.

(10)

In the above, Ni denotes the set of neighboring nodes of node
i, |Ni| is its cardinality and σi is the algorithm parameter for
node i which is initially set to zero. xk+1

i is the global state
variables in node i at the step k + 1 which in DCSE can be
obtained from (10).

In this Section, we presented DCSE a distributed algo-
rithm for state estimation based on decentralized consensus
optimization. Next we extend this algorithm for robustness
against false data injection.
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3.RESILIENT DECENTRALIZED
CONSENSUS-BASED STATE ESTIMATION

In this Section, we assume that there is a malicious party, Os-
car, who intends to disturb the state estimation process by in-
jecting false data into the measurements. Thus, we aim to
reliably estimate the state variables from the unreliable mea-
surements. We consider the following optimization problem

min
x,c

1
2 ∥z−Hx− a∥22

s.t. ∥ai∥0 < τ1, ∥ai∥22 < τ2, ai(j) ≤ 0 ∀j;
ai = Hic for i = 1, ..., R

(11)

where we also jointly estimate the false data or the anomaly
vector, a, in the process. In formulating (11), we have made
the following assumptions about a: (i) As in [3], the false
data is considered additive and a linear combination of the
column vectors of H, i.e., a = Hc or [a1 a2 ... aR]

T =
[H1 H2 ... HR]

T c; (ii) the anomaly vector is sparse as Os-
car can only alter a limited number of measurements in each
region, and (iii) Oscar has limited energy for perturbing the
state estimation and try disturb just by reducing the amount
of measurements in each region because of some reliability
and economical reasons.
Solving (11) with l0 norm constraint is NP-hard, and as such
we relax the l0 norm to the l1 norm constraint. We have

min
x,c

1
2 ∥z−Hx− a∥22

s.t. ∥Hic∥1 < τ
′

1, ∥Hic∥22 < τ2, Hic ≤ 0;

for i = 1, ..., R

(12)

Considering Hi = [h1i; h2i; ... ;hMi], where hji is the j’th
row of matrix Hi, we have ∥Hic∥1 = |h1ic| + |h2ic| + ... +
|hMic| and the first constraint in (12) may be rewritten as

∥Hic∥1 = −(h1i + h2i + h3i + ...)c = gic (13)

where gi is the negative sum of the rows of the matrix Hi.
Using strong Lagrange duality and the last constraint in (12),
the objective function in (11), f(x, c), may be rewritten as∑R

i=1 fi(x, c), where fi(x, c) or the objective function in re-
gion i is given by

fi(x, c) =
1

2
∥zi − Hix − Hic∥22 + λ1gic + λ2 ∥Hic∥22.

(14)
Since our purpose is to solve the above problem in a dis-
tributed manner we can rewrite (12) in the following form

min
x,c,y

f(x, c) + p(y) s.t Ax + Dy = 0 (15)

where p(y) = 0. For solving the above problem via ADMM
we first should write the augmented Lagrangian of (15).

L(x, c, y, v) = f (x, c) + vT (Ax + Dy) +
µ1

2
∥Ax + Dy∥22

(16)
where v is the Lagrange multiplier and µ1 is a constant pa-

rameter for the algorithm. The update steps of ADMM are
as below. In the following steps the c update could be jointly
done by either the x step or the y step. As the augmented La-
grangian is decomposable with c and y, we prefer to update c
with y.

Algorithm 1 RDCSE
1: Initialize xi and ci with zero
2: for i = 1, ..., R do
3: At first update xi as (25) for each region
4: Update ηi for each region as (25)
5: Update ci for each region as (29)
6: Update βi for each region as (29)
7: end for

xk+1 = argmin
x

L
(
x, ck, yk, vk

)
ck+1, yk+1 = argmin

c,y
L
(
xk, c, y, vk

)
vk+1 = vk + µ1

(
Axk+1 + Dyk+1

) (17)

We can find simpler steps for updating x similar to what we
did for DCSE.

xk+1
i =

(
HT

i Hi + 2µ1 |Ni| I
)−1[

HT
i (zi − Hicik)− ηk

i + µ1

(
|Ni| xki +

∑
j∈Nj

xkj

)]

ηk+1
i = ηk

i + µ1

(
|Ni| xk+1

i −
∑

j∈Nj

xk+1
j

)
(18)

For c update we can follow a similar approach, i.e.,
ck+1 = argmin

c
f(xk, c) (19)

We can solve the problem by formulating to ADMM form.
min

c,y
f(xk+1, c) + q(y) s.t Ac + By = 0 (20)

where q(y) = 0,then the augmented Lagrangian of the (20)
is as follows.

L(c, y, v) = f(xk+1, c) + vT (Ac + By) +
µ2

2
∥Ac + By∥22

(21)
where v is the Lagrange multiplier and µ2 is a constant pa-

rameter for the algorithm. Similar to the x update steps we
can find the c update steps as follows

ck+1
i =

(
HT

i Hi + 2λ2HT
i Hi + 2µ2 |Ni| I

)−1[
HT

i (zi − Hixki )− λ1gTi − βk
i + µ2

(
|Ni| cki +

∑
j∈Nj

ckj

)]

βk+1
i = βk

i + µ2

(
|Ni| ck+1

i −
∑

j∈Nj

ck+1
j

)
(22)

Finally, we summarize the presented scheme, henceforth
referred to as the Resilient Decentralized Consensus-based
State Estimation (RDCSE), in Algorithm 1. In the next
Section, we will validate the performance of the proposed
schemes.

4.PERFORMANCE EVALUATION
For simulation we test DCSE and RDCSE on IEEE 14 and
IEEE 118 bus test systems based on the data from MAT-
POWER [19]. Similar to [11], the two systems are parti-
tioned to 4 and 3 regions, respectively. We consider PMU
measurements (voltage and line currents) for state estima-
tion. In IEEE 14 and 118 bus systems, there are 46 and
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Fig. 1. EDT
i,k and EDC

i,k for DCSE and [10] for IEEE 14 bus

Fig. 2. EDT
i,k and EDC

i,k for DCSE and [10] for IEEE 118 bus

564 measurements, and 28 and 236 state variables, recep-
tively. Moreover, in all of the test cases we consider a line
topology for communication network. As a benchmark for
comparisons, we consider the approach proposed in [10] that
similarly aims to estimate the global system state in each re-
gion. In the sequel, the superscripts T , C and D for variables
indicate ”true values”, ”centralized estimation” and ”decen-
tralized estimation”, respectively. For example, xDi,k is the
distributed estimate of states region i at iteration k. We con-
sider the following normalized errors as performance metrics
EDT
i,k = L−1

i

∥∥∥xDi,k − xTi
∥∥∥
2
, EDC

i,k = L−1
i

∥∥∥xD
i,k − xCi

∥∥∥
2

in
which Li is the number of state variables in region i.

Figures 1 and 2 show EDT
i,k and EDC

i,k for DCSE and the
scheme in [10] for each region i ∈ {1, ..., R} as a function of
the iteration number k for the IEEE 14 and 118 bus system,
respectively. As evident in these figures the proposed DCSE
scheme noticeably outperforms the scheme of [10] in conver-
gence rate and accuracy over both bus systems and in terms of
both performance metrics. For DCSE experiments, we empir-
ically set the constant parameter µ to 7000, and consider 1000
tests on average. The measurement noise is an independent
zero mean Guassian noise with standard deviation 0.01.

To validate that the proposed DCSE does not need local
observability in each region, we consider the IEEE 14 bus
system with 44 measurements (as opposed to the original
46) such that one of the regions is locally unobservable, but
the system is still globally observable.The simulation results,
depicted in Figure 3, show that in this setting the proposed

Fig. 3. EDT
i,k , EDC

i,k for IEEE 14 bus without local observability

Fig. 4. EDC
i,k with anomaly vector 1 and RDCSE in IEEE 118

scheme still arrives at a reliable estimate with a reasonable
accuracy. We next examine the performance of the proposed
RDCSE scheme in presence of false data. Table 1 shows
EDC
i,k for 3 different anomaly vectors over the IEEE 118 bus

system at iteration k = 1000. As evident, the proposed RD-
CSE scheme decreases EDC

i,k significantly and achieves very
good accuracy. Figure 4 shows EDC

i,k for one of the anomaly
vectors considered in IEEE 118 bus system. It is evident that
RDCSE cancels most of the disturbance due to anomaly and
provides a performance that is closer to that of the DCSE.
In these experiments, we empirically set parameters µ1 and
µ2 to 7000, and λ1 and λ2 to 5 and 500 and considered 100
different test cases.

Anomaly vector/Region i = 1 i = 2 i = 3

Anomaly vector 1 2 1 0.9

Anomaly vector 2 0.7 0.5 0.6

Anomaly vector 3 1 0.9 0.8

Table 1. EDC
i,k ×10−4 for RDCSE at k = 1000 in IEEE 118

5.CONCLUSION
Considering a smart grid that relies on PMU measurements
for state estimation and is subject to false data injection
anomaly, a resilient decentralized state estimation scheme
based on consensus optimization and ADMM algorithm was
presented. The performance results on IEEE 14 and 118 bus
systems demonstrated that the proposed scheme substantially
suppresses the effect of anomalies within a certain harsh class
and reliably estimates the system state in a decentralized
manner.
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Catalina Gómez-Quiles, Patricia Rousseaux, and
Thierry Van Cutsem, “A taxonomy of multi-area state
estimation methods,” Electric Power Systems Re-
search, vol. 81, no. 4, pp. 1060–1069, 2011.

[9] Xiao Li and Anna Scaglione, “Robust decentralized
state estimation and tracking for power systems via net-
work gossiping,” IEEE Journal on Selected Areas in
Communications, vol. 31, no. 7, pp. 1184–1194, 2013.

[10] Le Xie, Dae-Hyun Choi, Soummya Kar, and H Vincent
Poor, “Fully distributed state estimation for wide-area
monitoring systems,” IEEE Transactions on Smart
Grid, vol. 3, no. 3, pp. 1154–1169, 2012.

[11] Vassilis Kekatos and Georgios Giannakis, “Dis-
tributed robust power system state estimation,” IEEE
Transactions on Power Systems, vol. 28, no. 2, pp.
1617–1626, 2013.

[12] Ali Tajer, Soummyar Kar, H Vincent Poor, and
Shuguang Cui, “Distributed joint cyber attack detec-
tion and state recovery in smart grids,” pp. 202–207,
2011.
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