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ABSTRACT

High penetration of distributed energy resources presents
significant challenges and provides emerging opportunities
for voltage regulation in power distribution systems. Ad-
vanced power-electronics technology makes it possible to
control the reactive power output from these resources, in or-
der to maintain a desirable voltage profile. This paper devel-
ops a local control framework to account for limits on reactive
power resources using the gradient projection optimization
method. Requiring only local voltage measurements, the
proposed design does not suffer from the stability issues of
(de-)centralized approaches caused by communication delays
and noises. Our local voltage design is shown to be robust
to potential asynchronous control updates among distributed
resources in a “plug-and-play” distribution network.

1. INTRODUCTION
Recent advances in power distribution networks have led to
a growing interest in voltage regulation using distributed en-
ergy resources (DERs) [12]. Highly variable renewable gen-
eration and abrupt electric vehicle charging could result in
unexpected network-wide voltage fluctuations, at time-scales
much faster than the traditional control devices for voltage
regulation; see e.g., [6, 9, 12]. At the same time, the power-
electronics interface of DERs allows for managing its reactive
power output, serving as the emerging resources for fast re-
sponding to voltage fluctuations away from the rated values.

With the full network information available centrally, the
voltage control problem can be cast as an optimal power flow
(OPF) one that minimizes the network voltage mismatch er-
ror [5]. Several distributed optimization algorithms have also
been proposed to solve this centralized problem, relying on
information exchanges among neighboring buses [3,9,10,17].
More recently, a stochastic-approximation approach has been
adopted in [7] to handle high system variability and mea-
surement noises. Nonetheless, all these (de-)centralized ap-
proaches would require high-quality communication of the
measurement and control signals, which is not yet available
for every distribution system. Since these optimization-based
control methods are designed in an open-loop fashion, po-
tential communication delays or noises would challenge their
optimality and even stability for real-time implementations.

To tackle this, voltage control strategies have been de-
signed by using only locally available information such as
voltage magnitude measurements [8, 12, 15, 16]. With no
centralized coordination, the local control approach could
be challenged by the system stability concern when imple-
mented in real time. One popular design is the droop control,
in which the reactive power output from DERs scales linearly
with the instantaneous local voltage mismatch. As shown
in [4], the droop scaling factor has to be small enough to
ensure system stability, which could result in insufficient uti-
lization of reactive power resources. A general framework
of iterative local voltage control strategies has been recently
developed in [18], which can generalize the droop design.
Motivated by a surrogate voltage mismatch error proposed
in [4], the gradient-projection (GP) method [2, Sec. 3.3] has
been proposed for the resource-constrained voltage regula-
tion problem, which turns out to decouple into totally local
updates. Convergence analysis for the GP method can be
readily applied to establish the stability conditions for the
proposed control design.

The goal of this paper is to generalize the GP-based volt-
age control framework to the scenario of asynchronous local
control updates. Due to the heterogeneity of various DER re-
sources, it is very likely that individual nodes are not synchro-
nized in executing their local updates in a “plug-and-play”
distribution network. Motivated by this, the stability analysis
for asynchronous local voltage control would be of interest.
Under the framework of classical asynchronous distributed
optimization [2, Ch. 6-7], the choice of stepsize has to be
more conservative in order to account for potential delay in in-
formation exchange among peer processors. Smaller stepsize
could result in slower convergence speed for asynchronous
iterative algorithms. Interestingly, our GP-based local con-
trol method does not suffer from this stepsize issue. This
is because the voltage measurement input in our control de-
sign always provides the instantaneous feedback of the power
network-wide information. Thanks to this feature, the asyn-
chronous local control updates enjoys the same condition to
the synchronous case, on the stepsize choice for convergence.

2. MODELING AND PROBLEM STATEMENT

Consider a distribution network with (N + 1) buses collected
in the set N := {0, 1, . . . , N}, and line segments represented
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by the set L := {(i, j)} ⊂ N ×N ; see Fig. 1 for a radial net-
work illustration. We will consider tree-topology networks,
where the number of lines |L| = (N + 1)− 1 = N .

For bus i, let Vi denote its voltage magnitude, while pi
and qi denote the real and reactive power injection, all in per
unit (p.u.). Bus 0 typically corresponds to the substation bus,
assumed to be of fixed voltage; i.e., V0 = 1. For each (i, j),
let rij and xij denote its line resistance and reactance, and
Pij and Qij the real and reactive line flow from bus i to j,
respectively. In addition, the subset Nj ⊂ N has all bus j’s
neighboring buses that are further down from bus 0. Assum-
ing negligible line flow losses and Vj ≈ 1 for every j, one
can simplify the model flow using the so-termed LinDistFlow
equations [1], given for each (i, j) ∈ L as

Pij −
∑
k∈Nj

Pjk = −pj , (1a)

Qij −
∑
k∈Nj

Qjk = −qj , (1b)

Vi − Vj = rijPij + xijQij . (1c)

Clearly, (1a)-(1b) represent the real and reactive power flow
balance at bus j, while (1c) relates the line voltage drop to the
line flow. The LinDistFlow model linearly relates voltage Vj
at every bus to the network power injection.

To better represent the linear relation, we will develop the
matrix-vector form of the LinDistFlow model. To this end, let
matrix Mo of size (N + 1) × N denote the graph incidence
matrix for (N ,L); see e.g., [13, pg. 6]. Its `-th column would
correspond to a line segment (i, j) ∈ L, with all entries zero
except for the i-th and j-th ones being ±1. Let vector mT

0

be the first row of Mo, with the rest in the N × N M; i.e.,
Mo = [m0 M

T ]T . Since (N ,L) is a connected tree, the rank
of Mo equal to (N+1)−1 =N [13]. Hence, the square matrix
M is of full rank N and invertible. Upon defining the voltage
vector V := [V1, . . . , VN ]T and similarly other power related
vectors, one can stack the LinDistFlow equations in (1a)-(1c)
for every (i, j) ∈ L into

−MP = −p, (2a)
−MQ = −q, (2b)

[m0 MT ][V0 VT ]T = DrP + DxQ (2c)

where Dr is theN×N diagonal matrix with the `-th diagonal
entry equal to rij ; and similarly the diagonal Dx captures all
reactance xij’s. Solving for P and Q and substituting V0 = 1
into (2c) give rise to

V = Rp + Xq−M−Tm0 (3)

where R := M−TDrM
−1 and X := M−TDxM

−1 are
the network resistance and reactive matrices, respectively. As
shown by [4, 18], both R and X are symmetric positive defi-
nite (PD).

The goal of voltage regulation is to attain a desired voltage
profile V → µ by optimizing the injected reactive power in

0 1 i j 
P01 , Q01 Pjk , Qjk 

N 

r01 , x01 rij , xij 

p1 , q1 

Bus 

Line 

pi , qi pj , qj pN , qN 

Fig. 1. A radial distribution system with bus and line associ-
ated variables.

(3). The flat voltage profile is a popular choice, corresponding
to setting µ = 1. Since the injected reactive power q =
qg − qc, with qg denoting the reactive power supplied by
DERs and qc the uncontrollable part corresponding to load
consumption, the LinDistFlow model (3) becomes

V = Rp + Xqg −Xqc −M−Tm0 = Xqg + V̄ (4)

where V̄ := Rp − Xqc −M−Tm0 is the voltage profile
when the input qg = 0. Under given p and qc, the problem
becomes to minimize the voltage mismatch error by solving

q† = arg min
q

1

2
‖V − µ‖2 =

1

2
‖Xq + V̄ − µ‖2 (5a)

subject to q ≤ q ≤ q̄ (5b)

where ‖ · ‖ is the Euclidean norm operator, and the constraint
(5b) accounts for the limits of reactive power resources at
every bus. This is a box-constrained quadratic program (QP)
and could be easily solved if a centralized controller can
instantaneously acquire the full network information and
feedback the decisions to remote DERs. Without requiring
a centralized controller, this paper will develop a solution
approach using only local information by leveraging the
gradient-projection (GP) method.

Remark 1. Albeit an approximation, the linear model (4)
works well for distribution networks with power losses and
non-flat voltage. Otherwise, it can be thought of as the sensi-
tivity analysis under small system changes. Moreover, it has
been shown in [18] that (4) would hold for meshed networks
that not of tree topology. Interestingly, the inverse of X given
by B := X−1 = MD−1

x MT is also a PD matrix, and it is
actually the power network Bbus matrix used in the fast de-
coupled power flow (FDPF) analysis; see e.g., [14, Sec. 6.16].
As shown in [18], the local control design based on (4) can be
applied to meshed networks and even three-phase distribution
networks.

3. GP-BASED LOCAL VOLTAGE CONTROL

To develop local control schemes, consider a surrogate prob-
lem to (5) by weighting the voltage mismatch norm using
B := X−1, as given by

q? = arg min
q≤q≤q̄

f(q) :=
1

2
(Xq− Ṽ)TB(Xq− Ṽ) (6)
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where the voltage difference Ṽ := µ − V̄. The surro-
gate problem is still convex, because its Hessian X is a
PD matrix. Because of the box constraint, the weighted
error norm in (6) would attain a different solution com-
pared to the original unweighted problem (5). If every bus
has unlimited reactive power resource, the box constraint
would become inactive and the problem reduces to an uncon-
strained one. Accordingly, both error norm objectives would
achieve the minimum at zero with equal optimal solutions as
q† = q? = X−1(µ − V̄). This implies that under abundant
reactive power resources, the optimal solution to (6) has the
potential to closely approximate the minimum of the (5), sug-
gesting promising performance could be achieved by solving
the surrogate problem instead. This weighted norm has been
proposed in [4] for reverse engineering the classical droop
control design.

Thanks to the separable structure of the box constraint,
(6) can be easily solved using the gradient-projection (GP)
method, a generic constrained optimization solver; see e.g.,
[2, Sec. 3.3]. Upon forming the gradient direction

∇f(q) := Xq− Ṽ, (7)

the GP iteration works by projecting the gradient update, as

q(t+ 1) = P[q(t)− ε∇f(q(t))] , ∀t ≥ 0 (8)

where the stepsize ε > 0, and the operator P projects any
input to the box [q, q̄]. The projection is extremely efficient
through entry-wise thresholding.

Because of the projection operation, q(t) ∈ [q, q̄] always
holds for any t > 0. It is feasible to use the latest GP iterate
as the network reactive power input by setting qg = q(t) at
every iteration t. Under The linear relation in (4) suggests that
the gradient per iteration t

∇f(q(t)) = Xq(t)− Ṽ = V(t)− µ. (9)

Clearly, its j-th entry ∇jf(q(t)) = Vj(t)− µj only depends
on the local bus voltage, and does not require information on
the full vector q(t). Hence, the GP iteration (8) can be com-
pletely decoupled into local updates, as given by

qj(t+ 1) = Pj [qj(t)− ε(Vj(t)− µj)] ∀j, t (10)

where Pj is the local projection operator at bus j to the inter-
val [q

j
, q̄j ]. The proposed local control updates using (10) are

equivalent to the centralized counterpart (8).

Proposition 1. Under constant V̄, the local update (10) con-
verges to the optimum q? if 0 < ε < 2/K, where K is the
spectral norm of matrix X.

This proposition follows directly from the convergence
analysis for general GP algorithms in [2, Sec. 3.3], which re-
lies on the Lipschitz continuity condition ‖∇f(q)−∇f(q′)‖
≤ K‖q− q′‖, for any q and q′. The bound ε < 2/K would

ensure sufficient descent in the objective at every iteration.
To meet the Lipschitz continuity condition, K should be no
greater than the spectral norm of the Hessian X, which equals
to its largest eigenvalue since X is symmetric and PD.

Remark 2. As a special case of the first-order algorithms, the
GP method typically attains a linear rate of convergence [2,
Sec. 3.3]. The convergence speed of GP algorithms would
be determined by the condition number of the Hessian ma-
trix. To accelerate the convergence, one can scale the stepsize
to be dj per bus j using a diagonal D := diag(d1, . . . , dN ).
As shown in [18], this approach effectively scales the Hes-
sian to be [D1/2XD1/2]. To improve the condition number,
we can select D = [diag(X)]−1 in order to approximate the
Newton’s method. This diagonal scaling does not affect the
separability of the projection operator. Hence, the GP updates
with diagonally scaled Hessian would still converge, even for
the ensuing analysis of asynchronous GP updates.

The GP-based control design requires each bus to measure
its local voltage magnitude, which can be implemented with
minimal hardware requirements. The computation is also effi-
cient since it only involves scalar operations. In addition, even
though the analytical results rely on the linearized power flow
model, the proposed local voltage control (10) can be eas-
ily implemented in any realistic distribution networks such as
three-phase systems. Albeit its simple design and robust fea-
tures, the local update could suffer from performance degra-
dation due to the surrogate error norm objective in (6), com-
pared to a centralized approach with full network information
available. In the future, we would be interested in quantifying
this effect for given reactive power limits.

4. ASYNCHRONOUS VOLTAGE CONTROL

Asynchronous voltage control is motivated by the heterogene-
ity of reactive power resources. Allowing each of them to
perform local update at different rates would facilitate the
“plug-and-play” functionality for DER integration. Since im-
plementing (10) only requires local voltage information, the
nodes that can compute faster do not need to wait for other
slower ones. This strategy allows the faster nodes to execute
more iterations for a given time, leading to quicker response
to local voltage violations.

To this end, let the set Tj collect all the iterations at which
bus j executes its local update. The asynchronous counterpart
of (10) is given by

qj(t+ 1) = qj(t) + sj(t), ∀j, t (11)

where the difference

sj(t) :=

{
Pj [qj(t)− ε(Vj(t)− µj)]−qj(t), t ∈ Tj

0, t /∈ Tj
(12)

To establish the convergence condition, we will constrain
every bus to update sufficiently often. This is similar to the
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bounded update delay assumption in the analysis of partially
asynchronous algorithms in [2, Ch. 7]. Specifically, there
exists a positive integer T such that for every bus j and every
t ≥ 0, at least one of the elements of the set {t, t+ 1, . . . , t+
T − 1} belongs to Tj . Therefore, every bus performs a local
update at least once within every T iterations.

The general analysis of [2, Ch. 7] also considers the
scenario of bounded information delay in computing the lo-
cal update. Due to potential communication delays among
distributed processors, local updates may not be performed
based on the latest system state information. The analysis
in [2, Ch. 7] assumes that the local information used for
computing the gradient direction could be outdated by at
most T iterations. Under both types of delay, the sufficient
convergence conditions for general asynchronous GP algo-
rithms in [2, Sec. 7.5] state that (11)-(12) will converge if the
stepsize 0 < ε < 1/[K(1 + T +NT )]. This upper bound on
ε depends on the time delay constant T , based on the slowest
processor. Hence, the stepsize could be much smaller than
2/K in Proposition 1, potentially leading to much slower
convergence than the synchronous case.

Interestingly, our asynchronous update (11)-(12) does not
suffer from the information delay. Since V(t)−µ = Xq(t)−
Ṽ = ∇f(q(t)) always holds, sj(t) is computed at every
t ∈ Tj with the latest q(t). In other words, the network
power flow model guarantees that local voltage Vj(t) contains
the up-to-date information on the gradient direction. This is
different from the implementation of most parallel and dis-
tributed algorithms, where local updates require information
sent by peer processors. Thanks to this feature of local volt-
age control, the asynchronous version enjoys the same con-
vergence condition to the synchronous case, as follows.

Proposition 2. Under the bounded update delay assumption,
the asynchronous update in (11)-(12) converges to the opti-
mum q? if 0 < ε < 2/K.

Proof: By projecting any q′j to [q
j
, q̄j ], it holds that

[Pj(q′j) − qj ][Pj(q′j) − q′j ] ≤ 0 for any qj ∈ [q
j
, q̄j ] [2, Sec.

3.3]. This implies that at every iteration t ∈ Tj

sj(t)[sj(t)+ε∇jf(q(t))]=εsj(t)∇jf(q(t)) + s2
j (t) ≤ 0.

(13)

With the Lipschitz continuity of f(·), the descent lemma in [2,
Prop. A.32] entails that for every t ≥ 0

f(q(t+ 1)) = f(q(t) + s(t))

≤ f(q(t)) + s(t)T∇f(q(t)) + (K/2)‖s(t)‖2

≤ f(q(t))−
(

1

ε
− K

2

)
‖s(t)‖2. [cf.(13)]

If C := 1/ε −K/2 > 0 or equivalently ε < K/2, summing
up this inequality over all iterations yields∑∞

τ=0 ‖s(τ)‖2 ≤ 1
C f(q(0)) <∞,

Fig. 2. Iterative voltage mismatch error norm for various
choices of delay constant T .

which implies that limt→∞ sj(t) = 0 at every bus j, satisfy-
ing the convergence condition for GP algorithms.

The asynchronous GP algorithm also attains a linear rate
of convergence under some proper conditions of f(·) [11].
However, its convergence speed can become slower due to
the delay in executing updates. In general, optimal stepsize
for asynchronous methods is challenging to characterize.

5. NUMERICAL TESTS

To validate the convergence analysis for the asynchronous
control design, we have tested it on a synthetic radial network
as in Fig. 1 with N = 10. A uniform line reactance model is
assumed such that xij = 1 for every (i, j) ∈ L. The baseline
voltage profile V̄ is randomly generated using a Gaussian dis-
tributionN (1, σ2I) with σ = 0.1, and the desired flat voltage
profile is set to be µ = 1. The reactive power limits are set to
be [−0.2, 0.2] at every bus. The stepsize at bus j is set to be
εdj , where the scaling matrix D = [diag(X)]−1. Under this
setting, the maximum and minimum eigenvalues of the effec-
tive Hessian matrix are λmax = 7.2572 and λmin = 0.0334,
respectively. Hence, the bound on stepsize ε < 0.2756, while
we set ε = 2/(λmax + λmin) ≈ 0.274 as the choice for best
convergence rate under the synchronous scenario.

For given delay constant T , bus j performs the local up-
date once every Tj iterations, with integer Tj drawn from
a uniform distribution in [1, T ]. Fig. 2 plots the iterative
voltage mismatch error ‖V − 1‖ for various choices of T .
Although the error is not monotonically decreasing, it con-
verges at a linear rate under all scenarios. The case of T = 1
corresponds to the synchronous scenarios. Hence, the asyn-
chronous control would attain the same optimal solution as
the synchronous case. Fig. 2 also corroborates the choice of
ε in Proposition 2, as compared to the upper bound 1/[K(1 +
T +NT )] = 0.0025 for T = 10. We are interested to further
investigate the choice of stepsize for improving convergence
rate of the asynchronous method.
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