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ABSTRACT
We consider joint design of energy storage management and load
scheduling with integrated renewable energy. We aim at optimizing
the energy flows and load scheduling simultaneously in order
to minimize the overall system cost over a finite time horizon.
Our model incorporates battery operational costs and assumes
unknown arbitrary dynamics of renewable source, load, and pricing
information. Loads are modeled by individual tasks with their own
intensities, requested service durations, and maximum and average
delay constraints. We use a sequence of problem modification
and transformation and employ Lyapunov optimization technique
to design the real-time joint control and scheduling policy. Our
policy provides an closed-form solution for load scheduling and
storage energy management. We show that our proposed algorithm
guarantees a bounded performance from an optimal non-causal T -
slot look-ahead control policy.

Index Terms— Energy Storage Management, Load Scheduling,
Renewable Generation, Lyapunov Optimization

1. INTRODUCTION

Integrating renewable energy sources into the grid system has
become a vital green solution to reduce the energy cost [1]. As
the renewable generation becomes widely adopted, energy storages
are used to reduce the power grid instability caused by renewable
integration. Another attractive solution to stabilize the power grid
and reduce energy cost is the flexible load scheduling. The demand
of smart appliances can be shifted from the high-peak period to
the low-peak period. Combining both energy storage and flexible
loads will be the most promising future solution for the grid and
the consumers. To achieve these benefits, developing an effective
joint energy storage management and load scheduling solution is
important, but faces unique challenges. These include the stochastic
nature of renewable sources, the double effects of cost reduction by
energy storage and the operation cost of storage, and the coupling
of control decisions over time due to the finite battery capacity.
Furthermore, the scheduling delay of each load and the energy
usage are coupled with each other. As a result, it is particularly
challenging for a joint design of storage management and load
scheduling.

Load scheduling and storage management have attracted growing
interests recently for future energy system designs. For the load
scheduling, dynamic pricing problems to reduce peak-load are
considered in [2]–[4]. In [2], [3], multi-timescale scheduling is
proposed assuming the statistics of renewable energy are known
ahead of time. While [4] proposes a real-time scheduling algorithm,
no energy storage is considered. A real-time storage control policy
is studied in [5]. However, a prediction for each user’s load is
required. Without statistical information and prediction, Lyapunov
optimization framework [6] has been applied to design real-time

solutions for storage management with inflexible loads [7]–[10] and
with flexible loads [8], [11]–[14]. From the storage management
perspective, renewable energy is not considered in [11], [12], and
battery operation cost for storage is not modeled in [8], [13]. For de-
mand management, [8], [11]–[14] impose certain delay constraints
on loads to guarantee the worst delay, while the actual scheduling
for each user’s load tasks is not considered. Load scheduling is
considered in [15], assuming electricity price is known beforehand.
Except for [9], all the above works consider the long-term average
system cost.

In this paper, we design a real-time control solution for joint
energy storage management and load scheduling with integrated
renewable energy. We aim at optimizing the energy flows and
load scheduling simultaneously to minimize the overall system
cost within a finite time period. We consider a storage battery
with finite capacity, and model battery operational costs and delay
requirements for each load scheduling. Unlike existing works,
we assume unknown arbitrary dynamics of renewable source,
load, and pricing. To tackle this difficult stochastic problem, we
develop techniques through a sequence of problem modification and
transformation. This enables us to employ Lyapunov optimization
to design a real-time algorithm, in which we show that the storage
management and load scheduling are decoupled to be solved
sequentially with closed-form solutions. We further show that our
algorithm guarantees a bounded performance from an optimal non-
causal T -slot look-ahead control policy.

2. SYSTEM MODEL

We consider an energy storage management system as shown
in Fig. 1. A power consuming entity (user) can draw electricity
to supply its loads from available power sources and an energy
storage unit (battery). Two types of power sources are considered:
the conventional grid and the renewable generator. The battery
is used to store energy from both power sources and to supply
electricity to the user. As a part of the management system, a load
scheduling mechanism is implemented to schedule the user’s loads
within their delay requirements. We assume the system operates
in discrete time slots with t ∈ {0, 1, ∙ ∙ ∙ }, and all operations are
performed per time slot.

2.1. Load Scheduling

An example of load scheduling time line is shown in Fig. 2.
Let Wt denote a load arriving at the beginning of time slot t. We
have Wt , ρtλt, where ρt and λt are the load intensity per slot
and duration associated with Wt, respectively. We assume the load
duration is an integer in multiple of time slots, and the minimum
duration for any load is 1, i.e., λt ∈ {1, 2, . . .}.

Let dmax
t denote the maximum allowed delay for Wt before it

is served (in multiple of time slots), and let dt denote the actual
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Fig. 1. An energy storage management system.
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Fig. 2. An example of load scheduling.

scheduling delay incurred for Wt. We have

dt ∈ {0, 1 . . . , dmax
t }, ∀t. (1)

We define an indicator function 1S,t(dτ ) , {1 : if t ∈ [τ +dτ , τ +
dτ + λτ ); 0 : otherwise}, for ∀τ ≤ t. It indicates whether or
not the load Wτ is being served at time slot t. Consider a To-slot
period. We define dw as the average scheduling delay of all arrived
loads within this To-slot period, given as dw , 1

To

∑To−1
τ=0 dτ .

Besides the per load maximum delay constraint in (1), we impose
a constraint on the average delay dw as

dw ∈ [0, dmax] (2)

where dmax is the maximum average delay for the loads within the
To-slot period. The average delay dw reflects the quality of service
(QoS) for the loads within the To-slot period. Let Cd(dw) be the
cost function associated with dw. A longer delay reduces the QoS
and incurs a higher cost. Thus, we assume Cd(∙) to be a continuous,
convex, non-decreasing function with derivative C′

d(∙) < ∞.

2.2. Energy Storage and Supply

1) Power Sources: The user can purchase energy from the
conventional grid with a real-time price. Let Et be the amount
of energy bought per slot. It is bounded by

Et ∈ [0, Emax] (3)

where Emax is the maximum amount of energy can be bought
from the grid per slot. This amount can either be used to supply
the user’s loads and/or be stored into the battery. The real-time
price Pt is bounded as Pt ∈ [Pmin, Pmax], where Pmin and Pmax

are the minimum and maximum electricity prices at time slot t. We
assume the value of Pt is known to the user and is kept unchanged
during the slot t. The average cost for the purchased energy from
the grid over a To-slot period is defined by J

Δ
= 1

To

∑To−1
t=0 EtPt.

Renewable generator: Let St be the amount of renewable energy
harvested at time slot t. We assume the priority of using St is to
first supply the user’s loads. Denote this portion by Sw,t, we have

Sw,t = min

{
t∑

τ=0

ρτ1S,t(dτ ), St

}

. (4)

The remaining portion of St, if any, can be stored into the battery.
Since there is a cost associated to the battery charging activity, we

use a controller to determine whether or not the remaining portion
can be stored into the battery. Let Sr,t be the amount of renewable
energy charged into the battery at time slot t. It is bounded by

Sr,t ∈ [0, St − Sw,t]. (5)

2) Battery Operation: The battery can be charged from either the
grid, the renewable generator, or both. Let Qt denote the portion
of Et charged into the battery. The total charging amount at time
slot t is bounded by

Qt + Sr,t ∈ [0, Rmax] (6)

where Rmax is the maximum charging amount for the battery.
Similarly, let Dt denote the discharging amount from the battery.
It is bounded by

Dt ∈ [0, Dmax] (7)

where Dmax is the maximum discharging amount allowed from
the battery. We assume there is no simultaneous charging and
discharging activities at the battery. This means

(Qt + Sr,t) ∙ Dt = 0. (8)

Let Bt denote the state of battery (SOB) at time slot t. With a
finite capacity, Bt is bounded by

Bt ∈ [Bmin, Bmax] (9)

where Bmin and Bmax are the minimum energy required and
maximum energy allowed in the battery. The dynamics of Bt due
to charging and discharging activities evolve as

Bt+1 = Bt + Qt + Sr,t − Dt. (10)
We consider two types of battery degradation costs caused by

the (dis)charging activities: entry cost and usage cost. The entry
cost is a fixed cost incurred due to each (dis)charging activity.
Define two indicator functions to represent charging and dis-
charging activities: 1R,t , {1 : if Qt + Sr,t > 0; 0 : otherwise}
and 1D,t , {1 : if Dt > 0; 0 : otherwise}. Denote Crc as the entry
cost for each charging activity and Cdc for each discharging. Define
xe,t , 1R,tCrc + 1D,tCdc as the entry cost at time slot t. We
have the time-averaged entry cost over To-slot period defined as
xe , 1

To

∑To−1
t=0 xe,t. The usage cost is the cost associated with the

(dis)charging amount. Define xu,t
Δ
= |Qt + Sr,t − Dt| as the bat-

tery net changing amount at time slot t due to (dis)charging. From
(6) and (7), xu,t is bounded by xu,t ∈ [0, max{Rmax, Dmax}].
We define the time-averaged usage over To-slot period as xu ,
1

To

∑To−1
t=0 xu,t. It is straightforward to see that xu is bounded by

xu ∈ [0, max{Rmax, Dmax}]. (11)

We model the usage cost as a function of xu, denoted by Cu(xu).
It is known that fast (dis)charging, i.e., a large value of xu,t has
more detrimental effects on the life time of a battery. Let Cu(xu) be
the cost function associated with the average net charging amount
xu. We assume Cu(∙) is a continuous, convex, and non-decreasing
function with derivative C′

u(xu) < ∞. Overall, we have the
average battery degradation cost over the To-slot as xe + Cu(xu).

2.3. Supply and Demand Balance

For each load Wτ arriving at time slot τ , if it is scheduled to
be served at time slot t ≥ τ , the energy supply needs to meet
the energy demand ρτ per slot. The overall energy supply must be
equal to the total energy demand from those loads being served at
time slot t. Thus, we have the following supply-demand balance
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Et − Qt + Sw,t + Dt =
t∑

τ=0

ρτ1S,t(dτ ), ∀t. (12)

3. JOINT LOAD SCHEDULING AND ENERGY STORAGE
MANAGEMENT

Our design objective is to minimize the system cost averaged
over a period of To slots. We model the overall system cost as
a weighted sum of the cost from energy purchase and battery
degradation, and the cost of scheduling delay. Define at ,
[Et, Qt, Dt, Sw,t, Sr,t] as the energy control action vector at time
slot t. Our goal is to determine {at, dt}, based on current and past
system inputs {Wτ , Sτ , Pτ}t

τ=0, to minimize the time-averaged
system cost. This stochastic optimization problem is formulated by

P1: min
{at,dt}

J + xe + Cu(xu) + αCd(dw)

s.t. (1) − (5), (8), (11), (12), and

0 ≤ Sr,t + Qt ≤ min{Rmax, Bmax − Bt} (13)

0 ≤ Dt ≤ min{Dmax, Bt − Bmin}. (14)

where α is the relative weight between energy related cost and
delay incurred in load scheduling in the joint optimization.

Problem Modification: P1 is a difficult stochastic optimization
problem. The (dis)charging constraints (13) and (14) are functions
of the current SOB Bt, making the control actions coupled over
time. To remove the time coupling, we see that the change of battery
energy level over the To-slot period is BTo −B0 =

∑To−1
t=0 (Qt +

Sr,t −Dt). We now set this change to be a desired value Δu, i.e.,

To−1∑

t=0

(Qt + Sr,t − Dt) = Δu. (15)

Note that Δu is only a desired value we set, which may not be
achieved by an control algorithm at the end of To-slot period. With
constraint (15), we now modify P1 to the following problem

P2: min
{at,dt}

J + xe + Cu(xu) + αCd(dw)

s.t (1) − (8), (11), (12), (15).

From P1 to P2, we impose constraint (15) on the net change of SOB
over the To-slot period. By doing so, we remove the dependency
of Bt in (13) and (14), and replace them by (6) and (7).

Problem Transformation: In the objective of P2, the battery
average usage cost Cu(xu) and scheduling delay cost Cd(dw)
are functions of time-averaged quantities, which complicate the
problem. Using the technique introduced in [16], we transform
the problem into one that only contains the time-average of the
functions. Specifically, we introduce auxiliary variables γu,t for
xu,t and γd,t for dt, and impose the following constraints

0 ≤ γu,t ≤ max{Rmax, Dmax}, ∀t (16)

0 ≤ γd,t ≤ min{dmax
t , dmax}, ∀t (17)

γu = xu, γd = dw (18)

where γi
Δ
= 1

To

∑To−1
τ=0 γi,t, for i = u, d. Define Ci(γi) ,

1
To

∑To−1
t=0 Ci(γi,t) as the time-averaged value of Ci(γi,t) over

To slots, for i = u, d. Replacing xu,t and dt by γu,t and γd,t, we
transform P2 into the following problem

P3: min
{πt}

J + xe + Cu(γu) + αCd(γd)

s.t (1) − (8), (12), (15) − (18)

where πt , [at, dt, γu,t, γd,t]. It can be shown that the two
problems P2 and P3 are equivalent. The proof is omitted here.

Transforming P2 to P3 enables us to propose a real-time joint
storage management and load scheduling policy by adopting Lya-
punov optimization technique [6]. The control actions {at} for P3
may not be feasible to P1 due to the modification from P1 to P2.
However, by properly designing our control parameters, we will
ensure the produced solution {at} are still feasible to P1.

4. REAL-TIME ALGORITHM

4.1. Lyapunov Function and Drift

For the time-averaged scheduling delay dw in (2), we introduce
a virtual queue Xt whose dynamics are given by

Xt+1 = max(Xt + dt − dmax, 0). (19)

The relation between (2) and (19) is that, by averaging (19) over
To slots, we have dw ≤ dmax +

XTo−X0

To
, and (2) is approximately

satisfied by (19) with mismatch
XTo−X0

To
.

For the time-averaged constraint (15), we introduce a virtual
queue Zt with dynamics given by

Zt+1 = Zt + Qt + Sr,t − Dt −
Δu

To
. (20)

From the dynamics of Zt above and Bt in (10), we can show
that Zt = Bt −At with At

Δ
= Ao + Δu

To
t. Later, we design Ao to

ensure our storage control solution {at} by our real-time algorithm
satisfies the battery capacity constraint (9) imposed in P1.

Finally, to meet constraints in (18), we establish virtual queues
Hu,t and Hd,t as follows

Hu,t+1 = Hu,t + γu,t − xu,t, Hd,t+1 = Hd,t + γd,t − dt. (21)

Let Θt , [Zt, Xt, Hu,t, Hd,t] be the vector of the virtual queues
defined above. The quadratic Lyapunov function L(Θt) for Θt is
defined as L(Θt) , 1

2
(Z2

t +H2
u,t +X2

t +H2
d,t). To design a real-

time control algorithm, we define a one-slot sample path Lyapunov
drift as Δ(Θt) , L (Θt+1)−L(Θt), which can be shown to only
depend on the current system inputs {Wt, St, Pt}.

4.2. Real-Time Algorithm

Solving P3 is still difficult. Instead of minimizing the system
cost objective of P3, we intend to minimize a drift-plus-cost metric
given by Δ(Θt)+V [EtPt +xe,t +Cu(γu,t)+αCd(γd,t)], where
V > 0 is the relative weight between the drift and the system cost.
We use the upper bound of this drift-plus-cost function to design our
real-time algorithm. By removing all constant terms independent of
control action πt, we arrive at the following per slot optimization
problem

P4 : min
πt

Zt [Et + Sr,t + Sw,t − ρt1S,t(dt)] − |Hu,t|Sw,t

+ Hu,t[γu,t − (Et + Sr,t)] + |Hu,t|ρt1S,t(dt) + Xtdt

+ Hd,t(γd,t − dt) + V [EtPt + xe,t + Cu(γu,t) + αCd(γd,t)]

s.t (1), (3) − (8), (12), (16), (17).
Denote the optimal control action of P4 by π∗

t ,
[a∗

t , d∗
t , γ∗

u,t, γ
∗
d,t]. Regrouping the terms in the objective of P4 with

respect to the control variables, we can split P4 into sub-problems
and solve them sequentially. The steps are described below.

(i) Determine d∗
t and γ∗

d,t by solving P4a1 and P4a2 as below.

P4a1 : min
dt

dt(Xt − Hd,t) − ρt1S,t(dt) (Zt − |Hu,t|) s.t. (1).

P4a2 : min
γd,t

Hd,tγd,t + V αCd(γd,t) s.t. (17).
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(ii) Determine S∗
w,t in (4) using d∗

t obtained in (i).
(iii) Using S∗

w,t obtained in (ii) in (12), determine γ∗
u,t and a∗

t by
solving the following P4b1 and P4b2, respectively.

P4b1 : min
γu,t

Hu,tγu,t + V Cu(γu,t) s.t. (16).

P4b2 : min
at

Et(Zt − Hu,t + V Pt) + Sr,t(Zt − Hu,t)

+ V (1R,tCrc + 1D,tCdc) s.t. (3) − (8), (12).
We now solve each subproblem to obtain a closed-form solution.
1) The optimal d∗

t : Let ωo , −ρt (Zt − |Hu,t|), ω1 ,
(Xt − Hd,t), and ωdmax

t
, dmax

t (Xt − Hd,t). Solving P4a1, we
have i) If Xt−Hd,t ≥ 0: d∗

t = {0 : if ωo ≤ ω1; 1 : otherwise}; ii)
If Xt − Hd,t < 0: d∗

t = {0 : if ωo ≤ ωdmax
t

; dmax
t : otherwise}.

2) The optimal γ∗
d,t and γ∗

u,t: Let C′−1
i (∙) denote the inverse

function of C′
i(∙), which is the derivative of Ci(∙). The optimal

solution γ∗
i,t, for i = u, d, is given by γ∗

i,t = {0 : if Hi,t ≥

0; Γi : if Hi,t < −V βiC
′
i(Γi); and C′−1

i

(
−Hi,t

V βi

)
: otherwise},

where βu = 1, βd = α, Γu , max{Rmax, Dmax}, and Γd ,
min{dmax

t , dmax}.
3) The optimal a∗

t : Using d∗
t in 1), we determine the schedules

for the loads. Consequently, the optimal S∗
w,t is obtained. The

optimal storage control solution a∗
t is obtained by using the similar

approach in [9]. We omit the details due to space limitation.

4.3. Feasible Solution and Performance Bound

1) Feasible solution: Since the battery capacity constraint (9)
on Bt is not imposed in P4b2, our real-time algorithm may
not provide a feasible control solution {a∗

t } for P1. To en-
sure our solution is feasible to P1, we design Ao and V as
Ao = {A′

o : if Δu ≥ 0; A′
o − Δu : if Δu < 0}, where

A′
o = Bmin + V Pmax + V C ′

u(Γu) + Γu + Dmax + Δu
To

, and

V ∈ [0, Vmax] with Vmax = Bmax−Bmin−Rmax−Dmax−2Γu−|Δu|
Pmax+C′

u(Γu)
.

We can show that with the above values, the resulting Bt satisfies
the battery capacity constraint (9), and {a∗

t } is feasible to P1.
2) Performance bound: Denote u∗(V ) as the objective value of

P1 achieved by our real-time algorithm over To-slots. Partition To

slots into T frames with To = MT , for M, T ∈ N+. Let uopt
m be

the minimum T -slot average cost over the mth frame obtained by
an optimal non-causal T -slot look-ahead solution (i.e., {Wt, St,Pt}
are known ahead of time). The following theorem provides a bound
of the cost performance of our proposed real-time algorithm to uopt

m

of the T -slot look-ahead optimal solution.

Theorem 1. For any T > 0 that To = MT , and {Wt, St, Pt}
being any arbitrary processes over time, the To-slot average system
cost under the real-time algorithm is bounded by

u∗(V ) −
1

M

M−1∑

m=0

uopt
m ≤

GT

V
+

L(Θ0) − L(ΘTo )

V To

+
C′

u(Γu)(Hu,0 − Hu,To ) + αC′
d(Γd)(Hd,0 − Hd,To )

To

where G > 0 is a constant, and the above upper bound is finite.

5. SIMULATION RESULTS

We set each slot duration to be 5 minutes and consider a 24-hour
duration. Thus To = 288 slots. We use price Pt in [17] as shown
in Fig. 3 top. We consider both solar energy {St} and load {Wt}
being non-stationary processes, with the mean amount St = E[St]
and W t = E[Wt] changing periodically over 24 hours, following
three-stage values as shown in Fig. 3 middle and bottom, where
the standard deviations are σSi = 0.4Si and σWi = 0.2W i, for
i = h, m, l. Other parameters are set as follows: Rmax = Dmax =
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Fig. 3. System inputs W t, St, and Pt over 24 hours.
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0.165 kWh, Emax = 0.3 kWh, Crc = Cdc = 0.001, Bmin = B0 =
0, Bmax = 3 kWh and Δu = 0. We set V = Vmax and dmax

t

to be identical for ∀t. We assume the battery usage cost and the
delay cost are both quadratic functions, given by Cu(xu) = kuxu

2

and Cd(dw) = kddw
2
, where the constants ku = 0.2 and kd =

1/(dmax)2.
Under our proposed algorithm, we first show a section of load

scheduling results over time slots in Fig. 4. Each load is shown by
ρt (y-axis) and λt (x-axis). For example, the total amount of load
scheduled at time slot t = 324 is the summation over the region
circled in the plot. Fig. 5 shows the system cost vs. battery capacity.
The system cost reduces as Bmax increases. This is because a larger
battery capacity allows more flexible (dis)charging to reduce the
cost. Also, we compare our result with two other algorithms: 1)
conventional: where there is neither storage nor load scheduling;
2) storage only: where storage management is provided, but loads
are scheduled immediately without delay. Since the conventional
approach does not use a battery, the system cost is unchanged over
Bmax and is high. Thus, we only provide the cost value in Fig. 5.
We see that by joint load scheduling and storage management, the
system cost under our algorithm is reduced significantly over the
conventional approach, and a further cost reduction due to load
scheduling is also clearly seen.

6. CONCLUSION

In this work, we proposed a real-time joint energy storage
management and load scheduling algorithm aiming at minimizing
the system cost within a finite time period. We considered unknown
arbitrary system dynamics and included both battery operational
cost and delays cost. Our proposed real-time algorithm decouples
the storage management and load scheduling which are solved
sequentially. We showed that our proposed algorithm resulted in
a guaranteed bounded performance from an optimal T -slot look-
ahead scheme.
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