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ABSTRACT

An infinite time-horizon resource allocation problem is formulat-
ed to maximize the time-averaged multi-input multi-output (MIMO)
downlink throughput, subject to a time-averaged energy cost budget.
By using the advanced time decoupling technique, a novel stochas-
tic subgradient based online control (SGOC) approach is developed
for the resultant smart-grid powered communication system. It is
analytically established that even without a-priori knowledge of the
underlying random processes, the proposed online algorithm is ca-
pable of yielding a feasible and asymptotically optimal solution.

Index Terms— MIMO broadcast channels, smart grids, high-
penetration renewables, stochastic optimization.

1. INTRODUCTION

Downlink communications from the base station (BS) to mobile
users in wireless cellular systems is usually analyzed as a Gaus-
sian broadcast (BC) channel in information-theoretic approaches.
Shannon’s capacity for both single-input-single-output (SISO) and
multi-input multi-output (MIMO) BC channels has been well docu-
mented [1–4], when the transmitters (here BSs) are powered by per-
sistent energy sources of the conventional electricity grid. However,
the current grid infrastructure is on the verge of a major paradigm
shift, migrating from the aging grid to a “smart” one.

While integration of smart-grid technologies into resource allo-
cation clearly holds the key to fully exploiting the potential of future
downlink communications [5], only a few works are available in this
direction. Leveraging limited smart-grid capabilities in simplified
smart-grid models, recent works [5,6] addressed energy-efficient re-
source allocation for coordinated cellular downlink transmissions.
Building on realistic smart-grid models, our recent works in [7,8] de-
veloped energy management to minimize the energy transaction cost
subject to user quality-of-service (QoS) guarantees of coordinated
cellular downlink settings. None of these works though touched on
the impact of advanced smart-grid capabilities on the fundamentally
achievable rate limits for the BC channels in cellular networks.

As MIMO techniques have been well adopted by wireless stan-
dards, we study here the optimal resource allocation for smart-grid
powered MIMO downlink transmissions to approach the fundamen-
tal rate limits in future cellular networks. Specifically, we develop
an online resource allocation approach, which dynamically makes
instantaneous decisions without a-priori knowledge of any statis-
tics of the underlying random channel, renewables, and electricity
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price processes. To this end, the intended task is formulated as an
infinite horizon optimization problem aiming to maximize the time-
averaged (weighted) downlink throughput subject to a time-averaged
energy cost budget. Targeting a low-complexity solution, we adopt
the relaxation techniques in [8, 9] to decouple the decision variables
across time. Leveraging the stochastic dual-subgradient method, we
propose a novel online control algorithm. To analyze our scheme,
we generalize the framework in [8, 9] to characterize the two cou-
pled “virtual” queues involved in our online control. We then estab-
lish analytically that the proposed algorithm can yield a feasible and
asymptotically optimal strategy for the original problem.

The rest of the paper is organized as follows. The system mod-
els are described in Section 2. The proposed dynamic resource al-
location scheme is developed and analyzed in Section 3. Numerical
results are provided in Section 4, followed by the conclusions.

2. SYSTEM MODELING

Consider a MIMO BC downlink where a BS with Nt antennas com-
municates to K mobile users, each having Nr antennas. Powered by
a smart microgrid, the BS is equipped with one or more energy har-
vesting devices (solar panels and/or wind turbines), and can perform
two-way energy trading with the main grid. In addition, the BS has a
battery so that it can store part of the harvested energy for later use.

2.1. MIMO Downlink Channels

Consider an infinite scheduling horizon, indexed by the set T :=
{0, 1, 2, . . .}. Per slot t ∈ T , let Hk,t ∈ C

Nr×Nt denote the
channel coefficient matrix from the BS to user k = 1, . . . , K, and
Ht := {H1,t, . . . ,HK,t}. Let x(t) ∈ C

Nt×1 denote the trans-
mitted vector signal, which is the superposition of those transmitted
to individual users: x(t) =

∑K
k=1 xk(t). The complex-baseband

signal received at user k is then

yk(t) = Hk,tx(t) + zk(t) (1)

where zk(t) is additive complex-Gaussian noise with zero mean and
covariance matrix I (the identity matrix of size Nr).

The MIMO BC capacity is known to be achievable by dirty pa-
per coding [10]. For the codeword xk(t), the transmit covariance

matrix of user k is Sk,t := E[xk(t)x†k(t)]. With Px,t denoting

the transmit-power budget at the BS, it holds that
∑K

k=1 tr(Sk,t) ≤
Px,t. With rk denoting the achievable transmission rate for user k,
π(k) the kth user of a certain permutation π of {1, 2, . . . , K}, and
| · | the determinant operator, the rate K-tuple corresponding to per-
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mutation π, is

Rπ(Px,t;Ht) = ∪{Sk,t:
∑K

k=1
tr(Sk,t)≤Px,t}{(r1, . . . , rK) :

rπ(k) ≤ log

∣∣∣I +
∑k

u=1Hπ(u),tSπ(u),tH
†
π(u),t

∣∣∣∣∣∣I +
∑k−1

u=1Hπ(u),tSπ(u),tH
†
π(u),t

∣∣∣
, ∀k} (2)

and the BC capacity region per slot is

CBC(Px,t;Ht) = Co (∪πRπ(Px,t;Ht)) (3)

where Co(·) denotes the convex hull of the union over all permuta-
tions π of {1, 2, . . . , K}.

2.2. Smart Grid Operations

Let Et denote the BS energy harvested at the beginning of slot t.
Further, let C0 denote the initial energy, and Ct the state of charge
(SoC) in the battery at the beginning of slot t. With Cmax and Cmin

bounding the capacity of battery, we have Cmin ≤ Ct ≤ Cmax, ∀t.
With Pb,t denoting the power delivered to or drawn from the battery
at slot t, the stored energy obeys Ct+1 = Ct+Pb,t, where the power
(dis)charged is bounded by Pminb ≤ Pb,t ≤ Pmaxb . Per slot t, the
total BS energy consumption Pg,t includes the transmission-related
power Px,t, and a constant power Pc > 0 due to other components
such as the data processor, and circuits; hence, Pg,t = Pc + Px,t,
where it is further assumed that Pg,t ≤ Pmaxg .

When the renewable harvested energy is insufficient, the main
grid can supply the needed Pg,t to the BS with an amount [Pg,t −
Et + Pb,t]

+; with a two-way energy trading mechanism present, the
BS can also sell its surplus energy [Pg,t − Et + Pb,t]

− to the grid
at a fair price in order to reduce operational costs, where [a]+ :=
max{a, 0}, and [a]− := max{−a, 0}. Suppose that the energy can
be purchased from the grid at price αt ∈ [αmin, αmax], while the
energy is sold to the grid at price βt ∈ [βmin, βmax], with αt > βt

per slot t. Per slot t, the transaction cost for the BS is given by
G(Pg,t, Pb,t) = αt[Pg,t − Et + Pb,t]

+ − βt[Pg,t − Et + Pb,t]
−.

3. DYNAMIC RESOURCE ALLOCATION

Let wk denote the priority weight for user k, St := {S1,t, . . . ,SK,t},
and Gmax the maximum allowable power cost at the BS. Let
rB
k (St) denote the achievable transmission rate for user k, and
rB(St) := [rB

1 (St), . . . , rB
K(St)]. Over the scheduling horizon

T , the central controller at the BS determines the optimal transmit
covariance matrices {St, ∀t}, transmit-power {Px,t, ∀t}, and bat-
tery charging energy {Pb,t, ∀t}, in order to maximize the limiting
average (weighted) total throughput, subject to average energy cost
constraint. For notational brevity, we introduce the auxiliary vari-
able Pt := Pg,t + Pb,t, and express the variables {Pb,t} in terms of
{Pt, Px,t}. In sum, we wish to solve

max
{St,Ct,Pt,Px,t}

lim
T→∞

1

T

K∑
k=1

[wk

T−1∑
t=0

(rB
k (St))] (4a)

s. t. lim
T→∞

1

T

T−1∑
t=0

G(Pt) ≤ Gmax (4b)

0 ≤ Px,t ≤ Pmaxg − Pc (4c)

Pminb ≤ Pt − Px,t − Pc ≤ Pmaxb (4d)

Ct+1 = Ct + Pt − Px,t − Pc (4e)

Cmin ≤ Ct ≤ Cmax (4f)

rB(St) ∈ CBC(Px,t;Ht), ∀t. (4g)

3.1. Reformulation and Relaxation

With ψt := (αt − βt)/2 and φt := (αt + βt)/2, it follows that
G(Pt) = ψt|Pt −Et|+ φt(Pt −Et). Since αt > βt > 0, we have
φt > ψt > 0; hence, G(Pt) is a convex function of Pt.

Now let us convexify the rate functions rB
k (St). By the uplink-

downlink duality [11–13], the BC capacity region CBC(Px,t;Ht) can
be alternatively characterized by the capacity regions of a set of
“dual” multi-access channels (MACs). In the dual MAC, the re-
ceived signal is y(t) =

∑K
k=1H

†
k,txk(t) + z(t), where xk(t)

is the signal transmitted by user k, and z(t) is additive complex-
Gaussian noise with zero mean and covariance matrix I . Let Qk :=
E[xkx

†
k] � 0 denote the transmit covariance matrix of user k, and

let p := [P1, . . . , PK ]� collect the transmit-power budgets of all
users. The uplink-downlink duality dictates that the BC capacity re-
gion (3) equals the union of the MAC capacity regions corresponding
to all power vectors p satisfying

∑K
k=1 Pk ≤ Px,t; that is,

CBC(p;Ht) = ∪{p:∑K
k=1

Pk≤Px,t}CMAC(p;H†t ). (5)

With Rt(Px,t) := maxrB(St)∈CBC(Px,t;Ht)

∑K
k=1 wkrB

k (St),
[14, Lemma 1] has established the following result.

Lemma 1 Function Rt(Px,t) can be obtained by the optimal value of

max
Qk�0

K∑
k=1

(wπ(k) − wπ(k+1)) log

∣∣∣∣∣I +

k∑
u=1

H†
π(u),tQπ(u)Hπ(u),t

∣∣∣∣∣

s. t.

K∑
k=1

tr(Qk) = Px,t

(6)
where π is the permutation of user indices {1, . . . , K} such that

wπ(1) ≥ · · · ≥ wπ(K), and wπ(K+1) = 0. In addition, Rt(Px,t) is
a strictly concave and increasing function of Px,t.

Using Rt(Px,t), the optimal BC problem can be converted into
the optimal sum-power allocation for an equivalent “point-to-point”
link, as follows

R∗ := max
{Ct,Pt,Px,t}

lim
T→∞

1

T

T−1∑
t=0

[Rt(Px,t)], s. to (4b)−(4f). (7)

The convexity of constraint (4b) has been already clarified, while
constraints (4c)-(4f) are linear. As Rt(Px,t) is a concave function of
Px,t per Lemma 1, problem (7) is a convex program. Although (7)
becomes convex after judicious reformulation, it is still difficult to
solve since it entails maximization of the average total throughput
over an infinite time horizon. Furthermore, the battery energy level
relations in (4e) couple the optimization variables over the infinite
time horizon, which renders the problem intractable for traditional
solvers such as dynamic programming.

By recognizing that (4e) can be viewed as an energy queue re-
cursion, we next apply the time decoupling technique to turn (7)
into a tractable form [9]. For the queue of Ct, the arrival and de-
parture are Pt and Px,t + Pc, respectively, per slot t. For random
variables {Ht, Et, αt, βt}, we assume that mean ergodicity holds
almost surely (as), meaning

lim
T→∞

1

T

T−1∑
t=0

Rt(Px,t)
as
= E[Rt(Px,t)] (8)
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max
Qk�0,Pt≥0

K∑
k=1

(wπ(k) − wπ(k+1)) log

∣∣∣∣∣I +

k∑
u=1

H†
π(u),tQπ(u)Hπ(u),t

∣∣∣∣∣ + λ2(j)

K∑
k=1

tr(Qk) − λ2(j)Pt − λ1(j)G(Pt)

s. t. 0 ≤
K∑

k=1

tr(Qk) ≤ Pmaxg − Pc, Pminb ≤ Pt −
K∑

k=1

tr(Qk) − Pc ≤ Pmaxb (13)

and likewise for E[G(Pt)], E[Pt], and E[Px,t], where the expecta-
tion is taken over all sources of randomness. Now simply remove
the variables {Ct}, and consider the following problem

R̃∗ := max
{Pt,Px,t}

E[Rt(Px,t)]

s. t. E[G(Pt)] ≤ Gmax, E[Pt] = Pc + E[Px,t]

(4c) − (4d).

(9)

It can be shown that (9) is a relaxed version of (7). Specifically,
any feasible solution of (7) also satisfies the constraints in (9) [15].
As a result, the optimal value of (9) is not less than that of (7); that
is, R̃∗ ≥ R∗. Note that the time coupling constraint (4e) has been
relaxed in problem (9), which then becomes easier to solve.

We next develop a stochastic dual subgradient solver for (9),
which under proper initialization can provide an asymptotically op-
timal solution of the original resource allocation problem (4).

3.2. Dual Subgradient Approach

Let Ft denote the set of {Pt, Px,t} satisfying constraints (4c)–(4d)
per t, and λ := [λ1, λ2] collect the Lagrange multipliers associ-
ated with the two average constraints. With the convenient notation
Xt := {Pt, Px,t} andX := {Xt, ∀t}, the partial Lagrangian func-
tion of (9) is

L(X,λ) :=E[Rt(Px,t)] − λ1(E[G(Pt)] − Gmax)

− λ2(E[Pt] − Pc − E[Px,t]) (10)

while the Lagrange dual function is given by D(λ) := max{Xt∈Ft}t
L(X,λ), and the dual problem of (9) is: minλ1≥0,λ2 D(λ).

For the dual problem, we can resort to a standard subgradient
method to obtain λ∗. This amounts to running the iterations

λ1(j + 1) = [λ1(j) − μ(Gmax − E[G(Pt(j))])]+

λ2(j + 1) = λ2(j) − μ(Pc + E[Px,t(j)] − E[Pt(j)])
(11)

where j is the iteration index, and μ > 0 is an appropriate stepsize;
while primal variables Pt(j) and Px,t(j) are given by

{Pt(j), Px,t(j)} ∈ arg max
{Pt,Px,t}∈Ft

[Rt(Px,t)

− λ1(j)G(Pt) − λ2(j)(Pt − Pc − Px,t)]. (12)

By Lemma 1, the convex maximization problem (12) can be
transformed into (13) at the top of the page, which can be effi-
ciently solved by an off-the-shelf solver in polynomial time. With
{Pt(λ(j)),Qk(λ(j)), ∀k} denoting the optimal solution of (13),
one can subsequently determine Pt(j) = Pt(λ(j)), and Px,t(j) =∑K

k=1 tr(Qk(λ(j))).

3.3. Stochastic Subgradient Online Control

A challenge associated with the subgradient iterations (11) is com-
puting E[Pt(j)], E[Px,t(j)], and E[G(Pt(j))] per iterate. This
amounts to performing (high-dimensional) integration over un-
known joint distribution functions; or approximately, computing

the corresponding time-averages over an infinite time horizon. To
overcome this impractical requirement, we resort to a stochastic
subgradient approach. Dropping E from (11), consider the iterations

λ̂t+1
1 = [λ̂t

1 − μ(Gmax − G(Pt(λ̂
t)))]+

λ̂t+1
2 = λ̂t

2 − μ(Pc + Px,t(λ̂
t) − Pt(λ̂

t))
(14)

where {λ̂t
1, λ̂t

2} are stochastic estimates of those in (11), and Pt(λ̂
t),

Px,t(λ̂
t) are obtained by solving (12) with λ(j) replaced by λ̂t.

The update (14) is in fact an online approximation algorithm
based on the instantaneous decisions {Pt(λ̂

t), Px,t(λ̂
t)} per slot t.

Based on (14), we will develop next a stochastic subgradient based
online control (SGOC) algorithm for the original problem (4). The
algorithm is implemented at the BS as follows.

SGOC: Initialize with a proper λ̂0 := [λ̂01, λ̂02]. At every time

slot t, observe λ̂t,Ht, Et, αt, βt, and then do:
Energy management. Obtain {Pt(λ̂

t), Px,t(λ̂
t)} by solving

(12). Perform energy transaction with the main grid; and (dis)charge
the battery with the amount Pb,t = Pt(λ̂

t) − Px,t(λ̂
t) − Pc.

Broadcast schedule. Given Px,t(λ̂
t) at the BS, solve the

convex problem (6) to obtain the optimal “dual” MAC transmit-
covariance matrices {Qk(Px,t(λ̂

t)), ∀k}. Define for k = 1, . . . , K,

Ak := I + Hπ(k)

(∑k−1
u=1 Sπ(u),t−1

)
H†

π(k),

Bk := I +
∑K

u=k+1

(
H†

π(u)Qπ(u)(Px,t(λ̂
t))Hπ(u)

)

and use them to find the covariance matrices

Sπ(k),t = B
− 1
2

k FkG
†
kA

1
2
k Qπ(k)(Px,t(λ̂

t))A
1
2
k GkF

†
kB

− 1
2

k

where Fk and Gk could be obtained via singular value decomposi-

tion of the effective channel Hπ(k) given by B
− 1
2

k H†
π(k)A

− 1
2

k =

FkZG†k with a square and diagonal matrix Z [12]. Perform MIMO
broadcast with covariance matrix Sk,t per user k.

Lagrange multiplier updates. With Pt(λ̂
t), Px,t(λ̂

t) avail-

able, update Lagrange multipliers λ̂t+1 via (14).

3.4. Performance Guarantees

Next, we will rigorously establish that the proposed algorithm
asymptotically yields a feasible and optimal solution of (4) under
proper initialization. To this end, we first assert the asymptotic
optimality of the proposed SGOC algorithm in the following sense.1

Lemma 2 If {Ht, Et, αt, βt} are i.i.d. over slots, then the time-
averaging throughput under the proposed SGOC algorithm satisfies

R∗ ≥ lim
T→∞

1

T

T−1∑
t=0

E[Rt(Px,t(λ̂
t))] ≥ R∗ − μM

where M := 1
2
[(max{Pmaxb ,−Pminb })2+(Gmax)2+(max{αmax

(Pmaxg + Pmaxb ), βmax(Emax − Pminb )})2].

1The proofs of all lemmas and the theorem are omitted due to limited
space, but can be found in the journal version of this paper [15].
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Lemma 2 asserts that the proposed SGOC algorithm converges
to a region with optimality gap smaller than μM , which vanishes as
the stepsize μ → 0. However, since the proposed algorithm is based
on a solver for the relaxed (9), it is not guaranteed that the resultant
dynamic control policy is a feasible one also for (7). In the sequel,
we will establish that the SGOC in fact can yield a feasible policy
for (7), when it is properly initialized.

Let R′t(Px,t) denote the left (or right) derivative of Rt(Px,t).
Define R′(0) := max{R′t(0), ∀t}, and assume R′(0) < ∞. Us-
ing the compact notation δλ1 := max{0, αmax(Pmaxg + Pmaxb ) −
Gmax}, we have established the following.

Lemma 3 If the stepsize satisfies μ ≥ μ, where

μ :=
αmaxR′(0)

βmin(Cmax − Cmin + Pminb − Pmaxb − δλ1)
(15)

the SGOC iterates satisfy λ̂t
2 ∈ [−αmax(R′(0)

βmin

+μδλ1)+μPminb , μCmax−μCmin−αmax(R′(0)
βmin

+μδλ1)+μPminb ].

Note that λ̂t
1 and λ̂t

2 can be seen as two “virtual queues,” and

the evolution of λ̂t
2 in (14) in fact depends on the value of λ̂t

1; in
other words, the two “virtual queues” are coupled. This coupling of
“virtual queues” complicates the analysis, and it is clearly different
from [8,9], where the “virtual queues” evolve independently. Yet, by
exploiting the revealed characteristics of our SGOC policy, we can

first upper and lower bound λ̂t
1. Then capitalizing on the specific

coupling of the two “queues,” we further derive the stepsize lower

bound μ to ensure the bounds in Lemma 3 for λ̂t
2.

We consider now the mapping between the real and virtual en-

ergy queues: Ct =
λ̂t
2

μ
+ αmaxR′(0)

μβmin
+ αmaxδλ1 + Cmin − Pminb .

It can be readily inferred from Lemma 3 that Cmin ≤ Ct ≤ Cmax

holds, ∀t; hence, (4f) is always satisfied under the SGOC. Based on
Lemmas 2 and 3, we arrive at the main result.

Theorem 1 If we initialize with λ̂02 = μC0 − μCmin + μPminb −
αmax(R′(0)

βmin
+ μδλ1), and select μ ≥ μ, then the proposed SGOC

yields a feasible dynamic control for (7), which is asymptotically op-
timal in the sense limT→∞ 1

T

∑T−1
t=0 E[Rt(Px,t(λ̂

t))] ≥ R∗−μM.

Clearly, the minimum optimality gap between the SGOC and
the offline scheduling is given by μM . The asymptotically optimal
solution can be attained if we have very small power purchase prices
αt, or, very large battery capacities Cmax, so that μ → 0. This
makes sense intuitively because when the BS battery has a large ca-
pacity, the upper bound in (4f) is loose. In this case, with proper
initialization, the SGOC using any μ will be feasible for (7), or, (4).

4. NUMERICAL RESULTS

The considered MIMO downlink has a BS with Nt = 2 antennas,
communicating to K = 10 mobile users equipped with Nr = 2
antennas each. The system bandwidth is 1 MHz, and each entry
of Hk,t is a zero-mean complex-Gaussian random variable with u-
nit variance. The maximum/minimum SoCs are set to Cmax =
50, Cmin = 0 kWh, while the (dis-)charging rates are set to Pminb =
−5 and Pmaxb = 5 kWh/slot. The energy purchase price αt is u-
niformly distributed over [0.1, 1], while the selling price is set as
βt = rαt with r = 0.9. The stepsize is chosen as μ = μ. Two base-
line schemes are introduced in this setup, where ALG 1 is a “greedy”
scheme that maximizes the instantaneous throughput in (7) per slot
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Fig. 2. SGOC schedule of Px,t (Gmax = 15 and Pmaxg = 10 kWh).

without leveraging the battery. ALG 2 is similar to the proposed one
in the sense that it uses the stochastic dual subgradient to iteratively
approximate the primal solution; yet, neither renewable energy nor
battery is taken into account.

The average throughputs of the SGOC and ALGs 1-2 are com-
pared with respect to the growth of Gmax in Fig. 1. Clearly, the
throughputs of all three algorithms improve as Gmax or Pmaxg in-
creases since larger energy cost or looser maximum energy con-
sumption limit will allow more energy purchases from the smart grid
and larger energy consumption, leading to the increase of average
throughputs. In both cases, the proposed algorithm performs better
than ALGs 1-2. Specifically, when Gmax = 10 and Pmaxg = 50
kWh, the proposed scheme has 5.0% and 24.3% gains in average
throughput over ALGs 1 and 2, respectively. Intuitively speaking,
this is because the proposed algorithm intelligently leverages the re-
newable energy and energy storage device to hedge against future
losses, which cannot be fully exploited by ALGs 1-2.

Fig. 2 depicts the power schedule Px,t of the proposed SGOC
over time, and the fluctuation of energy purchase prices αt. It can
be clearly observed that the power consumption highly depends on
the instantaneous price αt. In particular, the proposed scheme tends
to consume more power when αt is lower (e.g., t = 2, 12, 24), and
tends to consume less power when αt is higher (e.g., t = 3, 14, 15).

5. CONCLUSIONS

Real-time resource allocation was developed for smart-grid powered
MIMO downlinks. Relying on the stochastic subgradient method, an
novel online algorithm was proposed to obtain a feasible and asymp-
totically optimal solution without knowing the distribution of the un-
derlying stochastic processes. Our generalized performance analysis
framework has fairly broad applicability for online control of wire-
less networks with coupled “real” or “virtual” queues.
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