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ABSTRACT

This paper considers a special subclass of separable semidef-
inite programs (SDPs), with the goal of identifying certain condi-
tions under which the SDP has a low-rank solution. We prove that
when the data matrices of the SDP satisfy certain matrix inequali-
ties, the SDP has a low-rank solution. Moreover, the rank of this
solution is related to parts of the data matrices only, irrespective of
any other factors such as the number of constraints. This is quite
different from the well-known Shapiro-Barvinok-Pataki rank reduc-
tion result, where the rank of the SDP solution relies on the number
of constraints. The usefulness of our result is demonstrated through
advanced beamforming applications in simultaneous wireless infor-
mation and power transfer (SWIPT) and physical-layer security, for
which rank-one optimal solutions can be easily identified by check-
ing our derived matrix inequality conditions.

Index Terms— Quadratically constrained quadratic program,
semidefinite relaxation, SWIPT, Physical-layer security

1. INTRODUCTION

Quadratically constrained quadratic program (QCQP) is an impor-
tant class of optimization problems, as evidenced by its wide scope
of applications in signal processing, communications and other ar-
eas [1, 2]. The QCQP problem class is nonconvex, and in fact, NP-
hard in general. As a result, efficient approximations for QCQP
are usually sought, and a widely used approximation technique is
semidefinite relaxation (SDR) [1]. The principle of SDR is to first
reformulate the QCQP as a rank-one-constrained matrix optimiza-
tion problem, and then relax the problem to a convex semidedinite
program (SDP) by ignoring the rank constraints. In general, SDR is
not tight; that is, given an arbitrary QCQP problem instance, there
may be a gap between the optimal values of the QCQP and its corre-
sponding rank-relaxed SDP. For such instances, the SDP does not ad-
mit a rank-one solution, and some specific approximation algorithm,
such as the randomization algorithm, is generally used to generate
a feasible (and suboptimal) QCQP solution from the (higher-rank)
SDP solution.

There are however some QCQP problem subclass where SDR is
provably tight [3–5] and we can retrieve a rank-one optimal solution
from the (rank-relaxed) SDP. Examples of these special QCQPs in-
clude the trust region subproblem [3] and its generalizations [4], and
complex-valued QCQPs with two inequality constraints or less [5].
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A more general result that covers the above results is the Shapiro-
Barvinok-Pataki (SBP) rank-reduction result [6] (also [1] for a re-
view). In essence, the SBP result studies when a low-rank solu-
tion to the SDP exists, and how such a low-rank solution can be
retrieved. To be specific, the SBP result considers a real-valued SDP
with m constraints (both inequality and equality), and shows that
under some rather mild assumptions there exists an optimal SDP so-
lution whose rank, denoted by r, satisfies r(r+1)/2 ≤ m. The SBP
result for the complex-valued separable SDP case was also consid-
ered in [7]. Simply speaking, the implication of the SBP result and
its extensions is that if the QCQP does not have too many constraints,
then a rank-one or low-rank SDP solution can be obtained.

In this paper we consider a different SDP problem subclass. To
describe it, let Hn be the set of n× n complex Hermitian matrices.
Also, let X1, . . . ,Xm+1 ∈ H

n be a set of optimization variables.
We consider a complex-valued separable SDP as follows:

min
{Xi}

m+1∑
i=1

Tr(CiXi) (1a)

s.t. Tr(AiiXi) ≥
m+1∑
j=1,
j �=i

Tr(AijXj) + bi, i = 1, . . . ,m (1b)

m+1∑
j=1

Tr(FijXj) ≤ di, i = 1, . . . , p, (1c)

X1, . . . ,Xm+1 � 0, (1d)

whereAij ,Ci,Fij ∈ H
n for all i, j, and bi, di ∈ R for all i.

Following the spirit of SBP rank reduction, our aim is to prove
when problem (1) has a low-rank solution with respect to (w.r.t.)
X1, . . . ,Xm. Note that we do not care about the rank of Xm+1;
the reason is application-driven and will become clear as we discuss
the applications later. Our main result can roughly be summarized as
follows: When the {Aij ,Fij ,Ci} satisfies certain matrix inequal-
ity relationships, there exists a low-rank solution (X1, . . . ,Xm) to
the SDP in (1) and there is an efficient way to compute such a so-
lution. Notice that unlike the SBP rank-reduction result, our result
does not depend on the number of constraints. The detailed descrip-
tions of the result and its proof will be provided in the next section.
The applications to transmit beamforming optimization will also be
discussed.

2. MAIN RESULT

To proceed, let f� denote the optimal objective value of problem (1).
Instead of dealing with problem (1) directly, we consider the follow-
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ing problem:

min
{Xi}

m∑
i=1

Tr(Xi) (2a)

s.t. Tr(AiiXi) ≥
∑
j �=i

Tr(AijXj) + bi, i = 1, . . . , m, (2b)

m+1∑
j=1

Tr(FijXj) ≤ di, i = 1, . . . , p, (2c)

m+1∑
i=1

Tr(CiXi) ≤ f�, (2d)

X1, . . . ,Xm+1 � 0. (2e)

In particular, note the constraint in (2d). Under this constraint, any
feasible solution of problem (2) is also an optimal solution to prob-
lem (1). Thus, the optimal solution to problem (2) must be optimal
to problem (1), too. Our interest now lies in studying sufficient con-
ditions under which problem (2) admits rank-constrained solutions.

Theorem 1 Consider problem (2) under the following conditions:

i) Ci � Cm+1 for all i ∈ {1, . . . ,m};

ii) Aj,i � Aj,m+1 for all i, j ∈ {1, . . . , m}, i �= j;

iii) Fj,i � Fj,m+1 for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , p};

iv) Aii +Ai,m+1 � 0 and rank(Aii +Ai,m+1) = ri, for all
i ∈ {1, . . . ,m}.

Also, suppose that problem (2) and its dual both have optimal so-
lutions, and that problem (2) attains zero duality gap. Then, any
optimal solution (X�

1 , . . . ,X
�
m+1) to problem (2) must satisfy

rank(X�
i ) ≤ ri, i = 1, . . . , m.

Proof of Theorem 1: For notational convenience, in this proof we
simply denote (X1, . . . ,Xm+1) as the optimal solution to prob-
lem (2). Since strong duality holds and problem (2) and its dual
problem have optimal solutions, any optimal solution to problem (2)
must satisfy the Karush-Kuhn-Tucker (KKT) conditions. Let us
write down some of the KKT conditions that will lead to the desired
result (the proof of the KKT conditions is omitted for conciseness):

Zi = I + ζCi +
∑m

j=1,
j �=i

λjAji +
∑p

j=1 νjFji − λiAii,

i = 1, . . . ,m, (3a)
Zm+1 = ζCm+1 +

∑m

j=1 λjAj,m+1 +
∑p

j=1 νjFj,m+1, (3b)

XiZi = 0, i = 1, . . . ,m+ 1, (3c)
Xi � 0, Zi � 0, i = 1, . . . ,m+ 1, (3d)
λ � 0, ν � 0, ζ ≥ 0, (3e)

where λ, ν, ζ and {Zi}i are the dual variables of the constraints in
(2b), (2c), (2d) and (2e), respectively. From (3a)-(3b), we can write

Zi = Σi − λi(Aii +Ai,m+1), (4)

for i = 1, . . . ,m, where

Σi =I + ζ(Ci −Cm+1) +
∑m

j=1,
j �=i

λj(Aji −Aj,m+1)

+
∑p

j=1 νj(Fji − Fj,m+1) +Zm+1.

It can be verified that under the conditions in Theorem 1, every Σi

is positive definite. Subsequently, we can pre-multiply both sides of
(4) to yield

XiΣi = λiXi(Aii +Ai,m+1). (5)

Since Σi is positive definite, we have rank(Xi) = rank(XiΣi),
which together with (5) implies rank(Xi) = rank(λiXi(Aii +
Ai,m+1)) ≤ rank(Aii + Ai,m+1) = ri. Thus, we obtain the
desired result in Theorem 1. �

Theorem 1 is vital in identifying an SDP problem subclass for
which the solution ranks can be small. It should be noted that the
low-rank result in Theorem 1 requires some special structures with
the data matrices {Aij ,Fij ,Ci}, but does not depend on other fac-
tors such as the number of constraints p in (2c); this is unlike the SBP
rank-reduction result and its extensions [6,7], in which the rank con-
ditions onXi depend on the total number of constraints. Theorem 1
can be further interpreted as a rank-one solution result as follows.

Corollary 1 Consider problem (1) under the conditions in Theo-
rem 1, with the following two extra conditions: ri = 1 for all i,
and that any optimal solution (X�

1 , . . . ,X
�
m+1) to problem (1) has

X�
i �= 0 for i = 1, . . . , m. Then, there exists an optimal solution to

problem (1) whose ranks satisfy

rank(X�
i ) = 1, i = 1, . . . , m.

Such an optimal solution can be obtained by solving two SDPs,
namely, by first solving problem (1) to obtain f�, and then solving
problem (2) to obtain (X�

1 , . . . ,X
�
m+1).

As will be discussed in the next section, there are a number of
transmit beamforming problems that fall within the scope of Corol-
lary 1.

Remark 1 We can make Theorem 1 slightly more general by replac-
ing condition iv) in Theorem 1 with another condition. Specifically,
let Ai,m+1 = A+

i,m+1 −A−
i,m+1 for some A

+
i,m+1,A

−
i,m+1 � 0.

It can be shown that the same result in Theorem 1 still holds if we
replace condition iv) with Aii + A+

i,m+1 � 0 and rank(Aii +

A+
i,m+1) = ri, for i = 1, . . . ,m.

3. APPLICATIONS

In this section, we demonstrate the usefulness of Theorem 1 by show-
casing several applications that falls into the form of problem (1).

3.1. Unicast Beamforming with Per-Antenna Power Constraints

Let us start with a simple example, namely, standard multiuserMISO
downlink unicast beamforming. In this scenario, a multi-antenna
base station (BS) sendsK independent messages toK single-antenna
users by transmit beamforming. Let n be the number of transmit an-
tennas, and hk ∈ C

n and wk ∈ C
n be the channel vector and

beamformer of user k, k = 1, . . . ,K, respectively. Also, denote

SINRk({Wl}l) =
hH

k Wkhk

σ2
k +

∑
i�=k

hH
k Wihk

(6)

to be the user-k’s signal-to-interference-and-noise ratio (SINR) for a
given transmit covariance set {Wl}l, where σ2

k is the noise variance
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at user k. Our problem of interest is a beamforming optimization
problem with per-antenna power constraints (PAPCs):

min
{wk}k

∑K

k=1 ‖wk‖
2

s.t. SINRk({wlw
H
l }l) ≥ γk, k = 1, . . . ,K,[∑K

k=1 wkw
H
k

]
ii
≤ Pi, i = 1, . . . , n,

(7)

where γk > 0 is the SINR threshold for user k, and Pi > 0 is
the peak power constraint at antenna i; see the literature such as [8]
for descriptions on why PAPCs may be preferred in practice. By
denotingWk = wkw

H
k and dropping the rank-one constraint with

Wk, we obtain the SDR of (7) as follows:

min
{Wk}k

∑K

k=1 Tr(Wk) (8a)

s.t. SINRk({Wl}l) ≥ γk, k = 1, . . . ,K, (8b)[∑K

k=1 Wk

]
ii
≤ Pi, i = 1, . . . , n, (8c)

Wk � 0, k = 1, . . . ,K. (8d)

The above SDR can be shown to be tight using our low-rank
SDP result in Corollary 1. To show this, observe that problem (8)
can be equivalently written as

min
{Wk}

K+1

k=1

∑K

k=1Tr(Wk) + 0.5Tr(WK+1) (9a)

s.t. (8b)− (8d), and WK+1 � 0 (9b)

where WK+1 is a redundant variable. In particular, it is easy to
verify that an optimal solution to Problem (9) must haveWK+1 =
0. Problem (9) is an instance of problem (1) where m = K,Xi =
Wi, i = 1, . . . ,K + 1, p = n,

Ci = I, i = 1, . . . ,m, CK+1 = 0.5I,
Aii =

1
γi
hih

H
i , Aij = hih

H
i , j = 1, . . . ,m, j �= i,

Ai,m+1 = 0, bi = σ2
i ,

Fij = eie
T
i , j = 1, . . . , m, i = 1, . . . , p,

Fi,m+1 = 0, di = Pi, i = 1, . . . , p;

(10)

here ei ∈ R
p is a unit vector with the ith element being one. One

can verify that (10) satisfy the conditions in Theorem 1 with ri = 1.
Also, owing to the SINR constraints in (8b), any feasible point of
problem (9) must satisfy Wi �= 0 for i = 1, . . . ,K. It follows
from Corollary 1 that problem (9) has a rank-one solution (under the
mild assumption in Theorem 1). Hence, SDR is tight for the PAPC-
constrained unicast beamforming problem.

3.2. Simultaneous Wireless Information and Power Transfer
Next, consider another scenario called simultaneous wireless infor-
mation and power transfer (SWIPT). On one hand we provide the
same unicast multiuser MISO dowlink beamforming as in Sec. 3.1,
and on the other hand we serve additional L energy receivers (ERs)
that aim at receiving energy from the BS. We adopt the energy-
signal-aided transmit strategy suggested in [9], where the beamformed
information is superimposed with a dedicated energy signal z(t) ∈
C

n. Herein, z(t) is randomly distributed with mean zero and co-
variance matrix Φ. The energy signal z(t) is assumed to be known
by the information receivers (IRs), and can be canceled by the IRs.
Thus, the received SINRs at the IRs after energy signal cancellation
have the same form as (6). On the other hand, the received energy
(normalized by unit time) at ER i may be formulated as [9]:

Qi({wkw
H
k }k,Φ) = ξiTr

(
Gi(Φ+

∑K

k=1 wkw
H
k )

)

for i = 1, . . . , L, where 0 < ξi ≤ 1 is the energy transfer efficiency
of ER i,Gi = gig

H
i and gi ∈ C

n is the channel vector from the BS
to ER i. Now, the SWIPT unicast downlink beamforming problem
with energy signal cancellation may be formulated as follows:

min
{wi}i,Φ�0

K∑
k=1

Tr(wkw
H
k ) + Tr(Φ)

s.t. SINRk({wlw
H
l }l) ≥ γk, k = 1, . . . , K

Qi({wlw
H
l }l,Φ) ≥ ηi, i = 1, . . . , L,

(11)

where ηi > 0 is the minimum energy transfer requirement for ER i.
Similar to (8), the SDR of (11) is given as follows.

min
{Wi},Φ

Tr(W̄ ) + Tr(Φ) (12a)

s.t. SINRk({Wl}l) ≥ γk, k = 1, . . . ,K, (12b)
Qi({Wl}l,Φ) ≥ ηi, i = 1, . . . , L, (12c)
W1, . . . ,WK ,Φ � 0, (12d)

where for convenience we denote

W̄ =
∑K

i=1 Wi.

Problem (12) can be rewritten as problem (1) via setting m = K,
Xi = Wi, i = 1, . . . ,K,Xm+1 = Φ, p = L,

Aii =
1
γi
hih

H
i , Aij = hih

H
i , j = 1, . . . ,m, j �= i,

Ai,m+1 = 0, bi = σ2
i , i = 1, . . . ,m,

Ci = I, i = 1, . . . ,m+ 1,
Fij = −Gi, ∀ j, di = −ηi/ξi, i = 1, . . . , p.

(13)

One can verify that the SWIPT problem satisfies the conditions in
Theorem 1 with ri = 1, and that any feasible point of problem (12)
must satisfy Wi �= 0 for i = 1, . . . ,K. Hence, it follows from
Corollary 1 that the SDR of the SWIPT problem is tight.

There are several SWIPT extensions for which the SDR tight-
ness result provided by Corollary 1 still applies.
1) SWIPT without Energy Signal Cancellation: The above SWIPT
formulation assumes that the IRs are able to cancel the energy signal
from their received signals. Since performing the latter requires ad-
ditional processing efforts, it may not be always possible to do so in
practice. In the scenario where the IRs do not perform energy signal
cancellation, the energy signal is seen as interference and the SINR
expressions should be modified as

SINRk({Wl}l,Φ) =
hH

k Wkhk

hH
k (

∑
i�=k

Wi +Φ)hk + σ2
k

. (14)

The corresponding SDR of SWIPT problem in (12) can be expressed
as problem (1) using the same settings as in (13), except that

Ai,m+1 = hih
H
i .

It can be verified that the conditions in Theorem 1 still hold. Hence,
by Corollary 1, the SDR in this case is tight.
2) SWIPT with Correlation-Based CSIs of ERs: Accurate informa-
tion of the ERs’ channels gi may not be always available. Suppose
that we only have information of the channel correlation matrices
E[gig

H
i ]; i.e., the so-called correlation-based CSI. For such a sce-

nario, we may modify the SWIPT formulation by replacing the left-
hand side of the energy transfer constraints in (12c) with long-term
average transferred energies; i.e.,

ξiE[g
H
i (W̄ +Φ)gi].
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Such a modified formulation can simply be accomplished by redefin-
ingGi in (12c) asGi = E[gig

H
i ]. Again, it is easy to verify that the

conditions in Theorem 1 are still satisfied. Hence, by Corollary 1,
SDR is still tight.
3) SWIPT for Maximal Energy Transfer with PAPCs: Consider the
SDR of an alternative SWIPT formulation, given as follows

max
{Wi},Φ

L∑
i=1

ξiTr
(
Gi(W̄ +Φ)

)
(15a)

s.t. SINRk({Wl}l) ≥ γk, k = 1, . . . , K, (15b)
Tr(W̄ +Φ) ≤ Psum, (15c)
W1, . . . ,WK ,Φ � 0, (15d)

where Psum > 0 is the maximum allowable total transmission power
of the BS, and SINRk(·) is defined in (6). As can be seen above, the
design aim is to maximize the ERs’ sum harvested energies, subject
to the total transmission power constraint and IRs’ SINR constraints.
The tightness of the SDR in (15) has been studied in [9]. Here, let us
consider a per-antenna power constrained version of problem (15):

max
{Wi},Φ

L∑
i=1

ξiTr
(
Gi(W̄ +Φ)

)
(16a)

s.t. SINRk({Wl}l) ≥ γk, k = 1, . . . , K, (16b)
[W̄ +Φ]ii ≤ Pi, i = 1, . . . , n, (16c)
W1, . . . ,WK ,Φ � 0, (16d)

where Pi > 0 is the maximum allowable transmission power of the
ith antenna of the BS. The rank-one solution conditions, or SDR
tightness, of problem (16) have not been studied in [9]. However,
since problem (16) satisfies the conditions in Theorem 1 (same Aij

as in (13), p = n, Fij = eie
T
i ∀ j, di = Pi, Ci = −

∑L

j=1 ξjGj

for all i), we immediately declare that the SDR problem (16) is tight.

3.3. Physical-Layer Security

Consider again the MISO downlink unicast beamforming model in
Sec. 3.1, and suppose that there are L single-antenna eavesdroppers,
or Eves for short, that intend to overhear theK messages transmitted
by the BS. To make the transmission secure, the BS adopts an artifi-
cial noise (AN)-aided unicast beamforming scheme where AN is su-
perimposed in the beamformed signals as a means to interfere Eves’
receptions; readers are referred to [10, 11] for a detailed description
of AN-aided secure beamforming. Suppose that AN is randomly
distributed with mean zero and covariance matrix Φ. Let gi ∈ C

n

for i = 1, . . . , L be the channel vector of Eve i. Then, the SINR for
the ith Eve to receive the kth message is given by

SINR
k
e,i({wjw

H
j }j ,Φ) =

Tr(Giwkw
H
k )

σ̄2
i + Tr

(
Gi(

∑
l �=k wlw

H
l +Φ)

)
for i = 1, . . . , L and k = 1, . . . ,K, where Gi = gig

H
i , σ̄2

i is the
ith Eve’s receive noise variance. In addition, one can check that the
received SINR at the ith legitimate user is exactly the same as (14).
Now, the AN-aided physical-layer secure beamforming problemmay
be formulated as

min
{wi}i,Φ�0

K∑
k=1

Tr(wkw
H
k ) + Tr(Φ)

s.t. SINRk({wjw
H
j }j ,Φ) ≥ γk, ∀ k ∈ K,

SINR
k
e,i({wjw

H
j }j ,Φ) ≤ ηik, ∀ (i, k) ∈ L × K,

(17)

where K = {1, . . . ,K}, L = {1, . . . , L}, ηik ≥ 0 is the SINR
threshold of the ith Eve for receiving the kth message. As seen, the
goal of problem (17) is to use minimum transmit power to guarantee
discriminative receive qualities between legitimate users and Eves.
The corresponding SDR is given by

min
{Wi}i,Φ

∑K

k=1 Tr(Wk) + Tr(Φ) (18a)

s.t. SINRk({Wj}j ,Φ) ≥ γk, k = 1, . . . ,K, (18b)

SINR
k
e,i({Wj}j ,Φ) ≤ ηik, ∀ (i, k) ∈ L × K, (18c)

W1, . . . ,WK ,Φ � 0. (18d)

Problem (18) has been shown to have rank-one solutions when there
is only one legitimate user, i.e., K = 1 [10]. However, for general
K, there is no result on the SDR tightness. We show below that
problem (18) indeed has a rank-one solution w.r.t. W1, . . . ,WK .
In particular, problem (18) can be written as problem (1) via setting
m = K,Xi = Wi, i = 1, . . . ,K,Xm+1 = Φ, p = KL, and

Aii =
1
γi
hih

H
i , Aij = hih

H
i , j = 1, . . . ,m, j �= i,

Ai,m+1 = hih
H
i , bi = σ2

i , i = 1, . . . ,m,
Ci = I, i = 1, . . . ,m+ 1,
F(l−1)K+k,j = −Gl, j ∈ K \ k, ∀ (l, k) ∈ L × K,
F(l−1)K+k,k = Gl/ηlk, ∀ (l, k) ∈ L × K,
F(l−1)K+k,m+1 = −Gl, ∀ (l, k) ∈ L × K,
d(l−1)K+k = σ̄2

l , ∀ (l, k) ∈ L × K.

(19)

One can verify that the conditions in Theorem 1 holds with ri = 1,
and that any feasible point of problem (18) must satisfyWi �= 0 for
i = 1, . . . ,K. Hence, it follows from Corollary 1 that the SDR of
the physical-layer secure beamforming problem is tight.

Remark 2 Similar to the SWIPT problem, one can also consider
correlation-based CSIs of Eves by replacingGi = gig

H
i withGi =

E[gig
H
i ] in (18c). It can be easily verified that this does not change

the settings in (19). Thus, the SDR (18) is still tight.

Remark 3 As another extension of the SDR (18), one can further
add some shaping constraints [12] to fulfill some specific design re-
quirement such as interference control. This can be done by adding
the following constraints to (18):

Tr

(
Ri(

K∑
k=1

Wk +Φ)

)
�i βi, i = 1, . . . , J (20)

where �i∈ {=,≤,≥}, and Ri ∈ H
n can be indefinite. Since

for the ith shaping constraint,W1, . . . ,WK and Φ share the same
Fij = Ri for all j, condition iii) in Theorem 1 always holds irre-
spective of the definiteness of Ri. Consequently, Corollary 1 holds
and we can again establish SDR tightness.

4. CONCLUSIONS

In this paper we studied a special class of SDP problems and de-
rived a set of conditions under which the SDP is guaranteed to have
a low-rank optimal solution. The result is important in identifying
the tightness of SDR in some special cases. The derived conditions
require the data matrices to satisfy certain matrix conditions, but
have no restriction on the number of constraints as in the famous
SBP rank-reduction result. We have showcased several advanced
beamforming examples, such as SWIPT and physical-layer security,
where we demonstrated how the derived conditions lead us to pin-
ning down the tightness of SDR in those beamforming optimization
problems.
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[4] J. Moré, “Generalizations of the trust region subproblem,” Op-
tim. Methods Softw., vol. 2, no. 1, pp. 189–209, 1993.

[5] A. Beck and Y. Eldar, “Strong duality in nonconvex quadratic
optimization with two quadratic constraints,” SIAM J. Optim.,
vol. 17, no. 3, pp. 844–860, 2006.

[6] G. Pataki, “On the rank of extreme matrices in semidefinite
programs and the multiplicity of optimal eigenvalues,” Math-
ematics of Operations Research, vol. 23, no. 2, pp. 339–358,
1998.

[7] Y. Huang and D. P. Palomar, “Rank-constrained separable
semidefinite programming with applications to optimal beam-
forming,” IEEE Trans. Signal Process., vol. 58, no. 2, pp. 664–
678, Feb. 2010.

[8] W. Yu and T. Lan, “Transmitter optimization for the multi-
antenna downlink with per-antenna power constraints,” IEEE
Trans. Signal Process., vol. 55, no. 6, pp. 2646–2660, June
2007.

[9] J. Xu, L. Liu, and R. Zhang, “Multiuser MISO beamform-
ing for simultaneous wireless information and power transfer,”
IEEE Trans. Signal Process., vol. 62, no. 18, pp. 4798–4810,
Sept. 2014.

[10] W.-C. Liao, T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “QoS-
based transmit beamforming in the presence of eavesdroppers:
An optimized artificial-noise-aided approach,” IEEE Trans.
Signal Process., vol. 59, no. 3, pp. 1202–1216, Mar. 2011.

[11] Q. Li and W.-K. Ma, “Spatially selective artificial-noise aided
transmit optimization for MISO multi-Eves secrecy rate max-
imization,” IEEE Trans. Signal Process., vol. 61, no. 10, pp.
2704–2717, May 2013.

[12] D. Hammarwall, M. Bengtsson, and B. Ottersten, “On down-
link beamforming with indefinite shaping constraints,” IEEE
Trans. Signal Process., vol. 54, pp. 3566–3580, Sep. 2006.

3450


