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ABSTRACT
For multiuser MISO systems with bounded uncertainties in the
Channel State Information (CSI), we consider two classical robust
design problems: maximizing the minimum rate subject to a transmit
power constraint, and power minimization under a rate constraint.
Contrary to conventional strategies, we propose a Rate-Splitting
(RS) strategy where each message is divided into two parts, a com-
mon part and a private part. All common parts are packed into one
super common message encoded using a shared codebook and de-
coded by all users, while private parts are independently encoded and
retrieved by their corresponding users. We prove that RS-based de-
signs achieve higher max-min Degrees of Freedom (DoF) compared
to conventional designs (NoRS) for uncertainty regions that scale
with SNR. For the special case of non-scaling uncertainty regions,
RS contrasts with NoRS and achieves a non-saturating max-min
rate. In the power minimization problem, RS is shown to combat
the feasibility problem arising from multiuser interference in NoRS.
A robust design of precoders for RS is proposed, and performance
gains over NoRS are demonstrated through simulations.

Index Terms— MISO-BC, degrees of freedom, linear precod-
ing, max-min fairness, quality-of-service, robust transceiver design.

1. INTRODUCTION

Consider a Multi-User (MU) Multiple Input Single Output (MISO)
system where a Base Station (BS) equipped withNt antennas serves
a set of single-antenna users K , {1, . . . ,K}, with K ≤ Nt. Un-
der the assumption of erroneous Channel State Information at the
Transmitter (CSIT) with bounded uncertainty regions, we address
two typical design problems: maximizing the minimum worst-case
rate subject to a total transmit power constraint (rate problem), and
minimizing the transmit power subject to a worst-case rate constraint
(power problem). Such problems, which are non-convex in gen-
eral and semi-infinite, were addressed in literature using various ap-
proaches and approximations [1–5]. However, all existing works
consider a conventional transmission scheme, i.e. each message is
encoded into an independent data stream, then all streams are spa-
tially multiplexed. For the rate problem, such designs are known to
yield a saturating performance at high SNRs where MU interference
becomes dominant [4–6]. Conversely, this creates a feasibility issue
for the power problem, since rates beyond the saturation level can-
not be achieved [1,4]. In this work, we propose a Rate-Splitting (RS)
strategy to combat these shortcomings.

LetWt,1, . . . ,Wt,K be messages uniformly drawn from the sets
Wt,1, . . . ,Wt,K , and intended for receivers 1, . . . ,K respectively.
In the proposed scheme, each user message is split into a private part
Wk ∈ Wk and a common part Wc,k ∈ Wc,k, whereWk ×Wc,k =
Wt,k. A super message (the common message) is composed by

packing the common parts such that Wc = {Wc,1, . . . ,Wc,K} ∈
Wc, where Wc = Wc,1 × . . . × Wc,K . Wc is encoded using a
common codebook shared by all users, while W1, . . . ,WK are en-
coded using private codebooks known by their corresponding users.
The resulting K + 1 encoded symbol streams are linearly precoded
and simultaneously transmitted. At each receiver, the common mes-
sage is decoded first by treating all private signals as noise. This is
followed by decoding the private message after removing the com-
mon message via Successive Interference Cancellation (SIC). The
original messages are delivered given that each receiver successfully
decodes the common message and its private message.

A special case of the described RS scheme [7, 8], where only
one user message is split, was shown to boost the sum Degrees of
Freedom (DoF) under CSIT errors that decay with increased SNR
at a rate of O(SNR−α) for some constant α ∈ [0, 1]. This strategy
was leveraged to enhance the sum-rate performance under various
CSIT assumptions [9, 10]. RS was also shown to provide signifi-
cant sum-rate gains in the large-scale array regime [11]. Employing
RS in a more general manner to achieve max-min fairness was first
reported in our previous work [12], where the average performance
over the error distribution was considered. This paper gives a more
complete treatment of the max-min problem by deriving the asymp-
totic rate performance (in a DoF sense) of the optimally designed
RS scheme. In addition, the approach is extended to tackle the in-
verse power optimization problem. We should also highlight that the
worst-case optimization considered in this work poses an extra chal-
lenge in comparison to [12] due to the minimization embedded in
each worst-case rate expression. The rest of the paper is organized
as follows. The system model is described in Section 2. In Sec-
tion 3, the problem is formulated and the asymptotic performance
is derived. An optimized design of precoders for the RS strategy is
proposed in Section 4. Simulation results and analysis are presented
in Section 5, and Section 6 concludes the paper.

2. SYSTEM MODEL

For the system introduced in the previous section, consider a trans-
mission taking place over a block of channel uses where the channel
remains fixed (quasi-static). The signal received at the kth user in a
given channel use writes as yk = hHk x+nk, where hk ∈ CNt is the
channel vector from the BS to the kth user, x ∈ CNt is the transmit
signal, and nk ∼ CN (0, σ2

n,k) is the Additive White Gaussian Noise
(AWGN) at the receiver. The transmit signal is subject to an aver-
age power constraint E{xHx} ≤ Pt. Without loss of generality,
we assume equal noise variances across users, i.e. σ2

n,k = σ2
n, and

channel entries with normalized average gains. Therefore, the long
term SNR is defined as SNR , Pt/σ

2
n. Moreover, σ2

n is non-zero
and remains fixed. Hence, Pt →∞ implies SNR→∞.
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Wc,W1, . . . ,WK are encoded into the independent data streams
sc, s1, . . . , sK respectively. For a given channel use, symbols are
grouped as s , [sc, s1, . . . , sK ]T ∈ CK+1, where E{ssH} = I.
The symbols are mapped to the BS antennas through the precoding
matrix P , [pc,p1, . . . ,pK ], yielding the transmit signal x = Ps,
where the common stream is superimposed on top of the private
streams. The power constraint is rewritten as tr

(
PPH

)
≤ Pt. The

kth average receive power is expressed as

Tc,k =

Sc,k︷ ︸︸ ︷
|hHk pc|2 +

Sk︷ ︸︸ ︷
|hHk pk|2 +

Ik︷ ︸︸ ︷∑
i 6=k

|hHk pi|2 + σ2
n︸ ︷︷ ︸

Ic,k=Tk

. (1)

The common message is first decoded by treating interference from
all private signals as noise. The kth user’s estimate of sc is obtained
as ŝc,k = gc,kyk, where gc,k is a scalar equalizer. Given that the
common message is successfully decoded, SIC is used to remove
the common signal from yk before decoding the private message.
The estimate of sk writes as ŝk = gk(yk − hHk pcsc,k), where gk
is the corresponding equalizer. At the output of the kth receiver, the
common and private MSEs, defined as εc,k , E{|ŝc,k − sc|2} and
εk , E{|ŝk − sk|2} respectively, write as:

εc,k = |gc,k|2Tc,k − 2<
{
gc,kh

H
k pc

}
+ 1 (2a)

εk = |gk|2Tk − 2<
{
gkh

H
k pk

}
+ 1 (2b)

where Tk is defined in (1). We assume perfect CSI at the Receivers
(CSIR) obtained through common and dedicated downlink train-
ing. This assumption is justified by noting that the effects of CSIR
estimation errors are at the same power level of additive noise,
which is overwhelmed by the influence of CSIT uncertainty [13].
Users employ optimum (gc,k, gk), i.e. the well-known Minimum
MSE (MMSE) equalizers given as: gMMSE

c,k = pHc hkT
−1
c,k and

gMMSE
k = pHk hkT

−1
k , from which the MMSEs are obtained as:

εMMSE
c,k = T−1

c,k Ic,k and εMMSE
k = T−1

k Ik. The kth SINRs write
as: γc,k = Sc,kI

−1
c,k = (1 − εMMSE

c,k )/εMMSE
c,k and γk = SkI

−1
k =

(1 − εMMSE
k )/εMMSE

k . Under Gaussian signalling, the kth max-
imum achievable rates are given as: Rc,k = log2(1 + γc,k) =
− log2(εMMSE

c,k ) and Rk = log2(1 + γk) = − log2(εMMSE
k ). To

ensure that all users decode Wc, it is transmitted in a multicast
fashion at the common rate Rc , minj{Rc,j}Kj=1.

3. PROBLEM STATEMENT AND ASYMPTOTIC
PERFORMANCE

For each channel vector hk, the BS obtains an erroneous estimate
ĥk, from which the error unknown to the BS is defined as h̃k , hk−
ĥk. As far as the BS is aware, h̃k is bounded by an origin-centered
sphere with radius δk. Hence, hk is confined within the uncertainty
region Hk ,

{
hk | hk = ĥk + h̃k, ‖h̃k‖ ≤ δk

}
. This is relevant

in limited feedback systems as quantization errors are bounded. In
scenarios where the number of feedback bits is made to scale with in-
creased SNR to provide improved CSIT quality [6,9], the uncertainty
region shrinks such that δ2

k = O(P−αt ), where α ∈ [0,∞) is a con-
stant exponent that quantifies the CSIT quality as SNR grows large

(assumed to be the same across users), i.e. α , limPt→∞−
log(δ2k)

log(Pt)
.

α = 0 represents a constant (or slowly scaling) number of feedback
bits, yielding non-decaying CSIT errors. On the other hand, α =∞

corresponds to perfect CSIT resulting from an infinitely high num-
ber of feedback bits. In the following, the exponents are truncated
such that α ∈ [0, 1] which is customary in DoF analysis as α = 1
corresponds to perfect CSIT in the DoF sense [6, 7].

Due to the CSIT uncertainty, the actual rates cannot be consid-
ered as design metrics at the BS. From the BS’s point of view,
achievable rates also lie in bounded uncertainty regions. We
consider a robust design where precoders are optimized w.r.t the
worst-case achievable rates defined for the kth user as R̄c,k ,
minhk∈HkRc,k(hk) and R̄k , minhk∈HkRk(hk), where the de-
pendencies of the rates on hk are highlighted. The worst-case
achievable common rate is defined as R̄c , minj{R̄c,j}Kj=1. Trans-
mitting Wc,W1, . . . ,WK at rates R̄c, R̄1, . . . , R̄K respectively,
guarantees successful decoding at the receivers for all admissible
channels within the uncertainty regions. Following the RS structure
in Section 1, the kth user’s portion of the common rate is denoted
by C̄k where

∑K
k=1 C̄k = R̄c. Therefore, the kth user’s worst-case

total achievable rate is given as R̄t,k = R̄k + C̄k, corresponding to
the rate at which the original message Wt,k is transmitted.

3.1. Rate Optimization Problem

Using the RS strategy, the robust rate optimization problem which
achieves max-min fairness is posed as

RRS(Pt) :



max
R̄t,R̄c,c̄,P

R̄t

s.t. R̄k + C̄k ≥ R̄t, ∀k ∈ K
R̄c,k ≥ R̄c, ∀k ∈ K∑K
k=1 C̄k = R̄c

C̄k ≥ 0, ∀k ∈ K
tr
(
PPH

)
≤ Pt.

(3)

where R̄t is an auxiliary variable, and c̄ , [C̄1, . . . , C̄K ]T . Point-
wise minimizations in R̄t and R̄c are replaced with inequality con-
straints in (3), where equality holds at least for one user at optimal-
ity. The constraints C̄k ≥ 0 guarantee non-negative splitting. In
contrast, the NoRS version of the problem is formulated as

R(Pt) :


max
R̄,Pp

R̄

s.t. R̄k ≥ R̄, ∀k ∈ K
tr
(
PpP

H
p

)
≤ Pt.

(4)

where R̄ is the rate auxiliary variable, and Pp , [p1, . . . ,pK ].
Solving (4) is equivalent to solving (3) over a restricted domain char-
acterized by setting c̄ = 0, which in turn forces R̄c and ‖pc‖2 to
zeros at optimality. As a result, we have RRS(Pt) ≥ R(Pt). Next,
we look at the optimum asymptotic performance of the two schemes.

To analyse the performance as SNR increases, we define a pre-
coding scheme for (3) as a family of feasible precoders with one
precoder for each SNR level, i.e.

{
P(Pt)

}
Pt

. The associated pow-
ers allocated to the precoding vectors are assumed to scale with Pt

as ‖pc‖2 = O(P act ) and ‖pk‖2 = O(P
ak
t ), where ac, ak ∈ [0, 1]

are some scaling exponents. Under a given precoding scheme, the
kth worst-case common and private DoF are defined as

d̄c , lim
Pt→∞

R̄c(Pt)

log2(Pt)
and d̄k , lim

Pt→∞

R̄k(Pt)

log2(Pt)
(5)

where the dependencies on the power level are highlighted in (5).
The kth user’s split of d̄c is defined as c̄k , limPt→∞

C̄k(Pt)
log2(Pt)

,

where
∑K
k=1 c̄k = d̄c. All definitions extend to the NoRS case
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where the common part is discarded, and a precoding scheme for (4)
is denoted by

{
Pp(Pt)

}
Pt

.

Theorem 1. The NoRS problem yields an optimum max-min DoF

d̄∗ , lim
Pt→∞

R(Pt)

log(Pt)
= α (6)

while the optimum max-min DoF for the RS problem is given by

d̄∗RS , lim
Pt→∞

RRS(Pt)

log(Pt)
=

1 + (K − 1)α

K
. (7)

Proof. Let {a∗k}Kk=1 be the power exponents of (4)’s optimum
precoding scheme. We initially assume that the optimum pow-
ers satisfy a∗1, . . . , a

∗
K = a∗. We have d̄∗k ≤ min {α, a∗}.

This is shown through upper-bounding the worst-case SINR, i.e.
γ̄k , minhk∈Hk γk(hk), by selecting hk ∈ Hk such that the lth
(l ∈ K\ k) interference is maximized, and discarding some interfer-
ence terms [14]. Since the point-wise minimum is upper-bounded
by any element in the set, and d̄∗ ≤ d̄∗k for all k ∈ K, we have
d̄∗ ≤ α. Next, assume that (3)’s optimum precoding scheme has
power exponents a∗c and a∗ for the common and private precoders
respectively. Using R̄c + R̄k ≤ R̄c,k + R̄k, and the previous bound-
ing techniques, we obtain d̄∗c + d̄∗k ≤ min{1+α−a∗, 1}. Since the
max-min DoF is upper-bounded by the average user DoF, we write

d̄∗RS ≤
d̄∗c+

∑K
k=1 d̄

∗
k

K
≤ 1+(K−1)α

K
, where the right-most inequality

is obtained from d̄∗c + d̄∗1 ≤ 1 and d̄∗k ≤ α.
The upper-bounds are achieved through feasible precoders as

follows. Best-effort Zero-Forcing (ZF) obtained using the available
channel estimate with powers scaling as O(Pαt ) is used for private
precoders, achieving d̄1, . . . , d̄K = α. For RS, this is superimposed
by a random common precoder with power that scales as O(Pt),
achieving d̄c = 1 − α which is split equally among users. Relax-
ing the assumption that a∗1, . . . , a∗K are equal yields the same result
using slightly more involved upper-bounding steps.

It should be noted that although the ZF precoders proposed in the
proof are optimum in a DoF sense, they may be far from optimum
from a worst-case rate perspective at finite SNRs. This motivates the
need for robustly designed precoders. It is evident that d̄∗RS ≥ d̄∗

holds for all α ∈ [0, 1], and strictly holds for α ∈ [0, 1). d̄∗RS is
lower-bounded by 1/K. Hence, an optimally designed RS scheme
is expected to achieve an ever-growing max-min rate.

3.2. Power Optimization Problem

The power problem with a rate constraint R̄t writes as

PRS(R̄t) :



min
R̄c,c̄,P

tr
(
PPH

)
s.t. R̄k + C̄k ≥ R̄t, ∀k ∈ K

R̄c,k ≥ R̄c, ∀k ∈ K∑K
k=1 C̄k = R̄c

C̄k ≥ 0, ∀k ∈ K.

(8)

On the other hand, the NoRS counterpart is formulated as

P(R̄) :

{
min
Pp

tr
(
PpP

H
p

)
s.t. R̄k ≥ R̄, ∀k ∈ K.

(9)

As (9) is a restricted version of (8), we have PRS(R̄t) ≤ P(R̄t).
We consider non-scaling CSIT with δ2

1 , . . . , δ
2
K = O(1), i.e. α =

0. This is relevant to (8) and (9) where the CSIT quality does not

change with the transmit power variation during the design proce-
dure, as channel estimation and feedback is carried out prior to the
precoder design. The rate and the power problems are monotoni-
cally non-decreasing in their arguments, and are related such that
R
(
P(R̄)

)
= R̄ and RRS

(
PRS(R̄t)

)
= R̄t, which can be demon-

strated using the same steps in [15, 16]. Combining this with The-
orem 1, it follows that under non-scaling CSIT errors, R

(
Pt

)
con-

verges to a finite maximum value as Pt → ∞, which is the maxi-
mum feasible rate for P(R̄). On the other hand, RRS(Pt) does not
converge. Hence, any finite rate is feasible for PRS(R̄t).

4. ROBUST OPTIMIZATION

Problems (3) and (8) are semi-infinite and appear to be intractable
in their current forms. Even finite instances of the problems seem
to be intractable due to the non-convex coupled sum-rate expres-
sions embedded in each user’s total rate. Therefore, we employ
the Rate-Weighted MSE (WMSE) relationship which is particularly
suitable for problems featuring sum-rate expressions [17–19]. The
kth user’s augmented WMSEs (referred to as WMSEs for brevity)
are defined as: ξc,k , uc,kεc,k − log2(uc,k) and ξk , ukεk −
log2(uk), with uc,k and uk as the corresponding weights. Optimiz-
ing over the equalizers and weights, the Rate-WMSE relationship
writes as: ξMMSE

c,k , minuc,k,gc,kξc,k = 1 − Rc,k and ξMMSE
k ,

minuk,gkξk = 1 − Rk, where the optimum equalizers and weights
are given by: g∗c,k = gMMSE

c,k , g∗k = gMMSE
k , u∗c,k =

(
εMMSE

c,k

)−1,
and u∗k =

(
εMMSE
k

)−1 [10, 12]. From this relationship, the worst-
case rates are equivalently written as

R̄c,k = 1− max
hk∈Hk

min
uc,k,gc,k

ξc,k
(
hk, gc,k, uc,k

)
(10a)

R̄k = 1− max
hk∈Hk

min
uk,gk

ξk
(
hk, gk, uk

)
. (10b)

Equivalent WMSE problems are obtained by substituting (10) into
(3) and (8), where the domains are extended to include the equaliz-
ers and weights as optimization variables. Such problems have an
interesting block-wise convex structure which can be exploited us-
ing the Alternating Optimization (AO) principle. However, the new
problems have infinitely many optimization variables and constraints
due to the dependencies of the optimum equalizers and weights on
perfect CSI. We resort to the conservative approximation in [14] by
swapping the minimization and maximization in (10). Equalizers
and weights loose their dependencies on perfect CSI and we obtain

R̂c,k = 1− min
ûc,k,ĝc,k

max
hk∈Hk

ξc,k
(
hk, ĝc,k, ûc,k

)
(11a)

R̂k = 1− min
ûk,ĝk

max
hk∈Hk

ξk
(
hk, ĝk, ûk

)
(11b)

where R̂c,k ≤ R̄c,k and R̂k ≤ R̄k are lower-bounds on the worst-
case rates (see footnote 1 in [14, Section IV.B.2]), and (ĝc,k, ĝk)
and (ûc,k, ûk) are the abstracted equalizers and weights which are
applied to all channels in the uncertainty sets. Plugging (11) into the
rate problem yields the conservative WMSE counterpart

R̂RS(Pt) :



max
R̂t,R̂c,ĉ,P,ĝ,û

R̂t

s.t.
1−ξk

(
hk, ĝk, ûk

)
+Ĉk ≥ R̂t, ∀hk ∈ Hk, k ∈ K

1− ξc,k
(
hk, ĝc,k, ûc,k

)
≥ R̂c, ∀hk ∈ Hk, k ∈ K∑K

k=1 Ĉk = R̂c

Ĉk ≥ 0, ∀k ∈ K
tr
(
PPH

)
≤ Pt

(12)
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where ĝ , {ĝc,k, ĝk | k ∈ K} and û , {ûc,k, ûk | k ∈ K}.
Extending this approach to the power problem yields

P̂RS(R̂t) :



min
R̂c,ĉ,P,ĝ,û

tr
(
PPH

)
s.t.
1−ξk

(
hk, ĝk, ûk

)
+Ĉk ≥ R̂t, ∀hk ∈ Hk, k ∈ K

1− ξc,k
(
hk, ĝc,k, ûc,k

)
≥ R̂c, ∀hk ∈ Hk, k ∈ K∑K

k=1 Ĉk = R̂c

Ĉk ≥ 0, ∀k ∈ K.
(13)

The semi-infiniteness is eliminated by reformulating the infinite sets
of rate constraints into equivalent Linear Matrix Inequalities (LMIs)
using the result in [20], based on the S-procedure. The kth total rate
constraint in (12) and (13) is rewritten as

ûk
(
τk + |ĝk|2σ2

n

)
− log2(ûk) ≤ 1 + Ĉk − R̂t (14a) τk − λk ψHk 0T

ψk I −δkPH
p ĝ

H
k

0 −δkĝkPp λkI

 � 0, λk ≥ 0 (14b)

while the kth common rate constraint is expressed as

ûc,k

(
τc,k + |ĝc,k|2σ2

n

)
− log2(ûc,k) ≤ 1− R̂c (15a)τc,k − λc,k ψHc,k 0T

ψc,k I −δkPH ĝHc,k
0 −δkĝc,kP λc,kI

�0, λc,k≥0 (15b)

where ψHk , ĝkĥ
H
k Pp − eTk and ψHc,k , ĝc,kĥ

H
k P − eT1 . For a

detailed description of the procedure, please refer to [2] and [14].
Next, we develop an unified AO algorithm that solves (12) and (13).

4.1. Alternating Optimization Algorithm

In each iteration of the algorithm, ĝ is first optimized by solving the
problems min

ĝc,k
max
hk∈Hk

εc,k

(
hk, ĝc,k

)
and min

ĝk
max
hk∈Hk

εk
(
hk, ĝk

)
for all

k ∈ K, formulated with objective functions τc,k + |ĝc,k|2σ2
n and

τk + |ĝk|2σ2
n, and constraints (15b) and (14b), respectively (weights

are fixed and ignored in this step). Such problems are posed as
Semidefinite Programs (SDPs) and can be solved efficiently using
interior-point methods [21]. The resulting conservative MMSEs,
ε̂MMSE
k and ε̂MMSE

c,k , are used to update the weights in the next step as
ûk = 1/ε̂MMSE

k and ûc,k = 1/ε̂MMSE
c,k . Finally, (P, ĉ) and the aux-

iliary rate variables are updated by solving a SDP formulated by fix-
ing (ĝ, û) in (12), or (13). This procedure is repeated in an iterative
manner until convergence, which is guaranteed since the bounded
objective functions behave monotonically over iterations. However,
appropriate initialization of P is required for the power problem to
avoid feasibility issues. This is done by performing rate optimization
for different power constraints in the first few iterations until a fea-
sible solution is found, before switching to power optimization. The
conservative approximations guarantee that the AO algorithm yields
feasible (although possibly sub-optimal) solutions for the original
problems. However, global optimality cannot be guaranteed even
w.r.t (12) and (13) due to non-convexity. Despite this sub-optimality,
such algorithms were shown to perform well [14].

5. SIMULATION RESULTS

We consider a system with K,Nt = 3, and i.i.d channel entries
drawn from CN (0, 1). We set σ2

n = 1, yielding a long-term SNR
of Pt. CSIT errors are uniformly drawn from the corresponding
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Fig. 2. Power minimization under a rate constraint of 3.3219 bps/Hz,
for K = Nt = 3, and δ1, δ2, δ3 = δ.

uncertainty regions, from which channel estimates are obtained as
ĥk = hk − h̃k, ∀k ∈ K. Fig. 1 shows the conservative worst-case
rate performance averaged over 100 channels. The scaling uncer-
tainty in Fig. 1b coincides with the non-scaling uncertainty in Fig. 1a
at 20 dB SNR. It is evident that RS outperforms NoRS for all SNRs,
with almost 30% improvement achieved at high SNR in Fig. 1a, and
25% improvement achieved at intermediate SNR in Fig. 1b. At first
glance, the RS rate saturation in Fig. 1a seems to contradict Theo-
rem 1. However, this can be regarded to the design’s sub-optimality
and the looseness of the conservative approximation [14], bearing in
mind that Theorem 1 quantifies the optimum performance.

For power optimization, Fig. 2a compares the feasibility of RS
and NoRS over a range of δs, where RS achieves an improvement
exceeding 100% compared to NoRS at δ = 0.15. On the other hand,
Fig. 2b shows the improved power performance. Intuitively, we
expect the power gap to increase with δ. However, since infeasible
channels are omitted in the average power calculation, averaging is
restricted to very well conditioned channels for larger δs.

6. CONCLUSION

In this contribution, we developed a robust RS transmission strat-
egy to address the rate and power design problems in MU-MISO
systems with CSIT uncertainties. This builds upon the existing RS
approach used to boost the sum-DoF and sum-rate performances.
We analytically proved that properly designed RS schemes achieve
superior max-min DoF performances compared to their NoRS coun-
terparts. Moreover, we showed that RS can be used to tackle the
feasibility problem appearing in NoRS power designs. We proposed
a sub-optimal unified algorithm that solves the robust RS rate and
power problems based on a conservative approximation. The supe-
rior performance of the RS algorithm compared to its NoRS counter-
part was demonstrated through simulations. In the extended version
of this work, we seek to develop a non-conservative robust design
that achieves the theoretically anticipated non-saturating rate perfor-
mance under non-scaling CSIT uncertainties.
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