
ON THE SEPARABILITY OF SIGNAL AND INTERFERENCE-PLUS-NOISE
SUBSPACES IN BLIND PILOT DECONTAMINATION

Julia Vinogradova, Emil Bj̈ornson, and Erik G. Larsson

Department of Electrical Engineering (ISY)
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ABSTRACT

Consider a multicell multiuser MIMO (multiple-input multiple-
output) system with a very large number of antennas at each base
station (BS). The number of users in each cell is assumed to befixed
as the number of BS antennas grows large. Under certain condi-
tions on the powers of the transmitting users, the signal eigenvalue
spectrum is asymptotically separated from the interference-plus-
noise spectrum as the number of BS antennas grows large. As it
was observed in [1], this phenomenon allows to mitigate the pilot
contamination problem. We provide the power limits for eachuser
in the cell of interest above which such a separation occurs asymp-
totically. Unlike the approximative methods used in [1], weobtain
these power limits by making use of the exact asymptotic charac-
terizations of the interference-plus-noise spectrum. Theresults are
based on the theory of small rank perturbations of large dimensional
random matrices.

Index Terms— Multicell multiuser MIMO, pilot contamina-
tion, random matrix theory, spiked models

1. INTRODUCTION

Massive MIMO is a promising technique to improve the spectral
efficiency of wireless communication systems. The key idea is to
let a multitude of users be active simultaneously and separate their
signals in spatial domain by equipping the BS with a large number
of antennas. Since this separation requires the BS to know spatial
channel characteristics of each desired user, channel estimation is
one of the main challenges in multicell massive MIMO systems. Due
to the limited resources on fading channels, the use of orthogonal
pilot sequences across all cells is unfeasible and the same pilots need
to be reused in at least a fraction of the cells. Therefore, the channel
estimates obtained in the cell of interest are contaminatedby signals
transmitted by users in the other cells. This problem is referred to
as pilot contamination. The corresponding loss in throughput was
analyzed in the early works [2] and [3], and the contamination is one
of the limiting factors when deploying very large BS arrays.The
pilot contamination effect can be suppressed by allocatingthe pilot
sequences in a judicious way. Variations in the spatial correlation
between users can be exploited to identify users that cause less pilot
contamination to each other [4, 5]. Alternatively, one can reuse the
same pilot sequences in only1/f of the cells, which reduces the
contamination at the cost of havingf times more pilots [4, 6]. Note
that only the pilot structure is optimized and utilized for channel
estimation in [4, 5, 6].

Blind and semi-blind estimators were used in [1, 7, 8, 9] to ex-
ploit also the payload data for channel estimation. These methods
can be used to separate desired signals from interfering signals and
noise, if the power levels are sufficiently different. The separability

is key in these schemes and was studied in [1], where a blind pilot de-
contamination method based on the theory of large dimensional ran-
dom matrices was proposed. Depending on the system parameters,
as the dimensions of the received signal matrix grow large, the spec-
trum of the sample covariance matrix asymptotically decomposes
into two disjoint parts corresponding to the interference-plus-noise
eigenvalue bulk and the signal eigenvalues. The main idea of[1] was
to find an approximated characterization of the limiting supports of
the interference-plus-noise spectrum from one side and of the sig-
nal spectrum from the other. Then, a bound on the power difference
between signal and interference was determined in order forthese
two bulk to not overlap. However, the method in [1] has two main
limitations. First, due to the approximations, the final bound does
not depend on the noise variance, so the bound becomes inaccurate
in the low signal-to-noise ratio (SNR) regime. The second limita-
tion comes from the approximation based on the assumption that the
number of interfering signals and signals of interest are both very
small in comparison to the number of BS antennas, making it inap-
plicable to the scenarios where the number of cells is considered to
be very large.

We derive a new asymptotic condition on the signal and
interference-plus-noise spectrum separability. The results are ob-
tained by using recent results from the theory of small rank per-
turbations of large dimensional random matrices. We only need to
assume that the number of signals of interest is much smallerthan
the number of receive antennas at the BS. The results rely on the
exact asymptotic analysis of the interference-plus-noisespectrum.
The new separability condition provides accurate results also in
situations where the approximation from [1] are inaccurate.

Notations: The superscript(·)H is the Hermitian transpose of
a matrix. We denote by

a.s.−→ the almost sure (a.s.) convergence.
The symbol=(z) stands for the imaginary part ofz. We denote by
CN (a, σ2) the complex circular Gaussian distribution with meana
and varianceσ2.

2. SYSTEM MODEL

Consider a multicell multiuser MIMO system with a cell of inter-
est andL neighboring interfering cells. Each cell contains one BS
equipped withM antennas andK single-antenna users. Consider
the uplink (reverse link) transmission where the BS of interest re-
ceives signals from all users in all cells. Letτ be the length of the
coherence interval in samples. TheM × 1 received vector at time
t = 1, . . . , τ is given by

yt = Hxt +

L∑

l=1

H
l
x
l
t +wt (1)
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wherext ∈ C
K×1 is the transmitted data vector with independent

entries with zero mean and covariance matrixP = diag(P1, . . . , PK)
with decreasingly ordered elementsP1 ≥ . . . ≥ PK representing
the powers of the transmitted signals in the home cell1; H ∈ C

M×K

is the channel matrix between the BS and theK users with inde-
pendent identically distributed (i.i.d.) entries with zero mean and
unit variance;xl

t ∈ C
K×1 is the interfering data vector in thelth

interfering cell with independentCN (0, I) entries2; Hl ∈ C
M×K

is the channel matrix between the BS and the users of the celll
with entries[Hl]M,K

m,k=1 ∼ CN (0, 1); wt ∈ C
M×1 is the addi-

tive noise vector with independentCN (0, σ2) entries. Defining

x̃t = [
(
x1
t

)H
, . . . ,

(
xL
t

)H
]H ∈ C

LK×1 and concatenatingτ succes-
sive samples of the received vectors given by (1), we obtain

Y = HP
1/2

X+HIXI +W (2)

whereY = [y1, . . . ,yτ ] ∈ C
M×τ , the matrixX ∈ C

K×τ has i.i.d.
entries,XI = [x̃1, . . . , x̃τ ] ∈ C

LK×τ with [XI ]
K,τ
k,t=1 ∼ CN (0, I),

HI = [H1P1, . . . ,HLPL] ∈ C
M×LK with [HI ]

M,LK
m,l=1 ∼

CN (0, 1), andW = [w1, . . . ,wτ ] ∈ C
M×τ with [W]M,τ

m,t=1 ∼
CN (0, 1).

We assume in the following thatM andτ are large3 and of the
same order of magnitude and define the asymptotic regime byM →
∞, such thatM/τ → c ∈ (0,∞). K is assumed to be fixed as
M → ∞. We define alsõc such thatM/(LK) → c̃ ∈ (0,∞). Note
that the definition of̃c is more general than the assumption made in
[1] whereLK is implicitly assumed to be very small as compared
to M . The results of this paper are based on asymptotic spectral
analysis of the sample covariance matrix defined byR̂ , 1

τ
YYH.

Write now the model (2) asY = A+ Z whereA = HP1/2X

is of small rankK with probability one and whose singular values
converge to

√
τMP1, . . . ,

√
τMPK asM → ∞ andZ = HIXI+

W has a rank equal tomin(M, τ ) with probability one. In large
dimensional random matrix theory, this model corresponds to a so-
called “spiked models” (see,e.g., [10]) whereZ is perturbed by the
small rank matrixA. In order to understand the main idea, consider
first the interference free case withY = A +W where the matrix
W corresponds to the noise only part. AsM → ∞, the spectrum of
R̂ converges to the Marčenko–Pastur (MP) law [11] and is composed
of one bulk of eigenvalues. However, under some conditions on P,
up toK isolated eigenvalues referring to the presence of the signal
matrix A can be found on the right side of the support of the MP
law. More precisely, if the smallest power satisfies the condition
PK > σ2√c/M [10], then all signal eigenvalues are asymptotically
separated from the noise eigenvalues asM → ∞. That is illustrated
in Figure 1 where the histogram is plotted for one realization of Y
and where both signal powers satisfy the separability condition.

We come back now to the modelY = A + Z. As the
interference-plus-noise covariance matrixZ has non i.i.d. entries,
the spectrum of̂R does not converge to the MP law and the con-
dition of separability is not the same as above. Asymptotically,
the spectrum of̂R may consist of one or two bulks (depending on
the interference-to-noise ratio,M , c, andc̃) representing noise and
interference and, as above, of up toK isolated eigenvalues corre-

1Pathloss differences within the home cell can be absorbed into P.
2The equal interference variance from all neighboring cellsrepresents a

worst case scenario. Ongoing work considers the case where this variance is
different in different cells.

3Note that practical values ofM andτ are at the order of hundreds or
thousands.
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Fig. 1. Histogram of the empirical eigenvalues of̂R and the
Marčenko–Pastur law forM = 500, τ = 1000, c = 0.5, K = 2,
P1 = P2 = 1/M , I = 0, andσ2 = 1.

sponding to the signal part. The main result of this paper provides a
separability condition and is presented in the next section. The proof
is based on the asymptotic spectrum analysis of1

τ
ZZH and the main

steps will be given in Section 4.

3. MAIN RESULT

Recall the interference-plus-noise matrixZ = HIXI + W. Let
G be the limiting spectral distribution (l.s.d.) of1

τ
ZZH with sup-

port denoted bysupp(G) and with the Stieltjes transform4 (ST)m
(see Theorem 3 for its characterization). Define the interference co-
variance matrix byΣI , 1

τ
HIXIX

H

IH
H

I with l.s.d. F whose ST
is denoted bymF and whose support is the interval[x1, x2] (see
Theorem 2). AsmF (z) for z ∈ C

+ , {z ∈ C,=z > 0} ad-
mits an analytic continuation on(x2,∞), we can definemF2

,

lim
x→x+

2

mF (x). The following theorem provides the condition for

separability and the limiting behavior of theK largest eigenvalues
of R̂.

Theorem 1. Letb be the upper bound ofsupp(G). It is given by

b =
m−1

F

(
1

cσ2

(
1− 1

1+σ2cmb

))

(1 + σ2cmb)2
+

σ2(1− c)

1 + σ2cmb
(3)

wheremb is the unique solution in(mF2
(1− σ2cmF2

)−1, 0) of

m =
1

2σ4c2x(m) (1 + σ2cm)2 m′

F(ξ(m))
+

1− c

2cx(m)
− 1

σ2c
(4)

with

x(m) =
m−1

F

(
1

cσ2

(
1− 1

1+σ2cm

))

(1 + σ2cm)2
+

σ2(1− c)

1 + σ2cm
,

ξ(m) =
(
1 + σ2cm

) ((
1 + σ2cm

)
x(m)− σ2 (1− c)

)
,

and

m′

F (ξ(m)) =

∫
dF (t)

(t− ξ(m))2
.

4The STmF of a spectral distributionF with support inR denoted by
supp(F ) is defined bymF (z) =

∫
(t − z)−1

dF (t). It is analytic on
C− supp(F ) and completely characterizes the spectral distributionF .
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Let m(x) be the analytic continuation ofm(z) on (b,∞). Define
ζ(x) , Mm(x) (cxm(x) + c− 1) decreasing fromζ(b+) to zero
on (b,∞). Let

Plim ,
1

Mmb (cbmb + c− 1)
. (5)

Let k0 ∈ {0, . . . ,K} be the largest integer for whichPk0
> Plim.

Letλ1 ≥ · · · ≥ λK be theK largest eigenvalues of̂R. If k0 = 0,
thenλ1

a.s.−−−−→
M→∞

b. Otherwise, fork = 1, . . . , k0, let ρk be the

unique solution in(b,∞) of the equationPkζ(x) = 1. Then,

λ1
a.s.−−−−→

M→∞

ρ1, . . . , λk0

a.s.−−−−→
M→∞

ρk0
, andλk0+1

a.s.−−−−→
M→∞

b.

From this theorem, ifk0 among theK signals satisfies the sep-
arability condition having their powers strong enough, then thek0
largest eigenvalues of̂R will converge to limits located outside the
right side ofsupp(G). If k0 = K then all the signals satisfies the
separability condition and the signal part is asymptotically separated
from the interference-plus-noise bulk. Note thatPlim in (5) is ob-
tained from anexactcharacterization of the upper boundb, in con-
trast to the approximate characterization provided in [1].The proof
is based on results of [12] and [13] and the main steps are provided in
the next section. Note that the values ofb andmb can be calculated
numerically by solving first the fixed point equation (4) in order to
getmb.

One application of Theorem 1 is that the BS of interest can sup-
press the interference-plus-noise by projecting the received sample
matrixY onto the eigendirections spanned by thek0 largest eigen-
values ofR̂. If the users of interest have distinct transmit powers
P1 > . . . > Pk0

, then it follows thatρ1 > . . . > ρk0
and thus

the BS can asymptotically associate the signal received over each
of the largest eigenvalues with its true transmitter. If thetransmit
powers are the same, or if the asymptotic regime has not been fully
approached in practice, pilot signals might be needed to correctly
separate the users’ signals (as in,e.g., [1, 8]). Notice that despite
the separation between interference-plus-noise, the signal eigenval-
ues contain residual interference and noise andρk > MPk; more
precisely, the remaining SNR isMPk/(ρk −MPk).

4. MAIN STEPS OF THE PROOF OF THEOREM 1

The power limit (5) is obtained from an application of the results of
[12]. The main concern of the proof of Theorem 1 is the charac-
terization ofb andmb. We start by presenting a result [14] on the
limiting probability density function of the eigenvalues of ΣI and
the ST of the corresponding l.s.d.

Theorem 2 ([14]). Let ΣI = 1
τ
HIXIX

H

IH
H

I whereHI andXI

are defined as in(2). Let M → ∞, M/τ → c ∈ (0,∞) and
M/(LK) → c̃ ∈ (0,∞). The l.s.d. ofΣI is given byF with
probability density composed of a point mass at zero that is only
vanishing formax{c̃, c} > 1 and a continuous part with a compact
support. The continuous partf(x) = c(x)/π wherec(x) is the
unique positive solution to

c2(x) = 3g2(x)− 2
c+ c̃− 2cc̃

cc̃
g(x) +

(c− 1)(c̃− 1) − x

cc̃x2

for x1 < x < x2 and0 elsewhere and the functiong(x) represents

the unique real solution on[x1, x2] of

8cc̃ξ2x2g3(x)− 8x (c+ c̃− cc̃) ξg2(x)

+ 2

(
(c− 1) (c̃− 1) − ξx+

(c+ c̃− 2cc̃)2

cc̃

)
g(x)

+
(ξx− (c− 1) (c̃− 1)) (c+ c̃− 2cc̃)

cc̃ξx
+ 1 = 0

with ξ = 1/(LKI) andx1 andx2 are two largest nonnegative so-
lutions of the equation

4cc̃ξ3x3 − ξ2
(
10c2 c̃+ 10cc̃+ 10cc̃2 − c2 − c2c̃2

− c̃2
)
x2 + 2ξ

(
4c3c̃+ 4cc̃+ 4cc̃3 − 2c2c̃− 2c2c̃2

− 2cc̃2 − c3c̃2 − c2c̃3 − c3 − c̃3 − c2 − c̃2
)
x

+ (c− 1)2 (c̃− 1)2 (c− c̃)2 = 0.

Moreover, the ST ofF , denoted bymF , forx ∈ R−[x1, x2], satisfies
the equation5

x2cc̃

ξ
m3

F (x)−
x (c+ c̃− 2cc̃)

ξ
m2

F (x)

+

(
(c− 1) (c̃− 1)

ξ
− x

)
mF (x)− 1 = 0. (6)

Making use of this result, the asymptotic spectrum of the
interference-plus-noise part can be now characterized.

The following result on the l.s.d. of the interference-plus-noise
covariance matrix is a direct application of [15] (Item 1) and of [16]
(Item 2).

Theorem 3 ([15], [16]). LetZ = HIXI + W with HI , XI , and
W defined as in(2). LetF be the l.s.d. ofΣI = 1

τ
HIXIX

H

IH
H

I

defined as in Theorem 2. Define

Σ ,
1

τ
(HIXI +W) (HIXI +W)H .

Then:

1. AsM → ∞, the empirical distribution function of the eigen-
values ofΣ converges weakly and a.s. to a non-random dis-
tribution functionG whose STm(z), for z ∈ C

+, is the
unique solution of

m(z) =

∫
dF (t)

t
1+σ2cm(z)

− (1 + σ2cm(z)) z + σ2(1− c)

(7)
such thatm(z) ∈ C

+ andzm(z) ∈ C
+.

2. Recall supp(G) is the support ofG. For any interval
[d1, d2] ⊂ R − supp(G), there existM0 such that for
all M ≥ M0,

P{no eigenvalue ofΣ appear in[d1, d2]} = 1.

Note that asm(z), z ∈ C
+ admits an analytic continuation on

(b,∞), we havemb = limx→b+ m(x). Notice that depending on
the system parameters,supp(G) may be asymptotically composed
of one (the interference spectrum is mixed with the noise spectrum)
or two intervals (the interference spectrum is separated from the
noise spectrum). The result of Item 2 means that asymptotically no

5The sign difference in (6) as compared to that in [14] is due tothe differ-
ent definition of the ST used in [14].
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eigenvalues due to the interference-plus-noise part can appear out-
side ofsupp(G) with probability one. Hence, if isolated eigenvalues
of R̂ are observed on the right side ofsupp(G), they are only due to
the signal part.

The final part of the proof consists in derivation of Equations (3)
and (4) by using the results of Theorem 2 and Theorem 3. We skip
the details of the derivation which is mainly based on the asymptotic
support analysis performed in [15].

5. NUMERICAL RESULTS

In this section we provide simulation results that compare the sepa-
rability regions of the proposed method with the results of [1]. All
the matrix entries of the model (2) are assumed to have circularly
symmetric Gaussian entries. The signal powers are assumed to be
all equalP1 = . . . = PK = P . Two cases with different noise
levels are considered. First, in Figure 2,σ2 is equal to−10 dB.
The ratioK/M is plotted versus the interference-to-signal power
ratio I/P . The signal is separated from the interference-plus-noise
within the region delimited by the horizontal axis, the vertical axis,
and the curves. In this scenario, we observe that the new separabil-
ity region is wider than that of [1]. This means that the result of [1]
underestimates the size of the separability region and the signal can
be still separated from the interference-plus-noise within the region
between the two curves. This is confirmed empirically by the his-
togram (obtained from 1000 realizations) of the sample covariance
matrix in Figure 3 by takingI/P = 0.2 andK/M = 2 · 10−3 (the
point marked by a square in Figure 2).

The second case considers a higher noise level for whichσ2

is equal to6 dB and the curves are plotted in Figure 4. The new
bound is tighter than that of [1] meaning that [1] incorrectly predicts
separation between the signal and the interference-plus-noise bulk
which does not happen in practice. This is confirmed in Figure5 by
taking I/P = 0.4 andK/M = 2 · 10−3 (marked by a square in
Figure 4).
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Fig. 2. Separability region forI = −24 dB, σ2 = −10 dB, L =
500, τ = 1000, andM = 1000.

6. CONCLUSIONS

This paper analyzes asymptotic bounds on separability of desired
signals and interference-plus-noise from the sample covariance ma-
trix in massive MIMO systems. Our results showed that the bounds
provided in [1] can be inconsistent at low SNR and forL large which
is due to the approximations used in [1]. In contrast, the proposed

bounds are derived by using the exact asymptotic spectrum analysis
making it applicable for a wider range of practical situations.

As future work, we will consider an extension to the scenario
where a relative attenuation between the out-of-cell usersand the
BS of interest is taken into account. In this case, the columns of the
channel matrixHI have different variances.
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Fig. 3. Empirical eigenvalues of1
τ
YYH for σ2 = −10 dB, I/P =

0.2, K = 2, L = 500, τ = 1000, andM = 1000.
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Fig. 4. Separability region forI = −24 dB, σ2 = 6 dB, L = 500,
τ = 1000, andM = 1000.
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