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ABSTRACT

Consider a multicell multiuser MIMO (multiple-input muyplie-
output) system with a very large number of antennas at eash
station (BS). The number of users in each cell is assumedfizdze

is key in these schemes and was studied in [1], where a bliotda-
contamination method based on the theory of large dimeakian-

padom matrices was proposed. Depending on the system paramete

as the dimensions of the received signal matrix grow latgespec-

as the number of BS antennas grows large. Under certain-condum Of the sample covariance matrix asymptotically decoses

tions on the powers of the transmitting users, the signareigiue
spectrum is asymptotically separated from the interfexepias-

noise spectrum as the number of BS antennas grows large. As

was observed in [1], this phenomenon allows to mitigate fl& p
contamination problem. We provide the power limits for easbkr
in the cell of interest above which such a separation occaysp-
totically. Unlike the approximative methods used in [1], akgtain
these power limits by making use of the exact asymptoticadzar
terizations of the interference-plus-noise spectrum. fHselts are
based on the theory of small rank perturbations of large dgiomal
random matrices.

Index Terms— Multicell multiuser MIMO, pilot contamina-
tion, random matrix theory, spiked models

1. INTRODUCTION

Into two disjoint parts corresponding to the interferepbgs-noise
eigenvalue bulk and the signal eigenvalues. The main idgg ofas
tﬁ find an approximated characterization of the limitingpsons of
the interference-plus-noise spectrum from one side anteobig-
nal spectrum from the other. Then, a bound on the power dififee
between signal and interference was determined in ordethése
two bulk to not overlap. However, the method in [1] has twomai
limitations. First, due to the approximations, the final bdwoes
not depend on the noise variance, so the bound becomes fatecu
in the low signal-to-noise ratio (SNR) regime. The seconaiti-
tion comes from the approximation based on the assumptairihia
number of interfering signals and signals of interest arih very
small in comparison to the number of BS antennas, makingjfi-in
plicable to the scenarios where the number of cells is censiito
be very large.

We derive a new asymptotic condition on the signal and
interference-plus-noise spectrum separability. Theltesue ob-

Massive MIMO is a promising technique to improve the spéctratained by using recent results from the theory of small raek p

efficiency of wireless communication systems. The key ideti
let a multitude of users be active simultaneously and sépanair
signals in spatial domain by equipping the BS with a large loeim
of antennas. Since this separation requires the BS to knatiatp
channel characteristics of each desired user, channehagin is
one of the main challenges in multicell massive MIMO systeinse
to the limited resources on fading channels, the use of gahal
pilot sequences across all cells is unfeasible and the séotemeed
to be reused in at least a fraction of the cells. Thereforecttannel
estimates obtained in the cell of interest are contamiriayesignals
transmitted by users in the other cells. This problem isrreteto
as pilot contamination. The corresponding loss in througlwas
analyzed in the early works [2] and [3], and the contamimaiscone
of the limiting factors when deploying very large BS arraykhe
pilot contamination effect can be suppressed by allocdtiegpilot
sequences in a judicious way. Variations in the spatialetation
between users can be exploited to identify users that cagsepllot
contamination to each other [4, 5]. Alternatively, one canse the
same pilot sequences in only f of the cells, which reduces the
contamination at the cost of havirfgtimes more pilots [4, 6]. Note
that only the pilot structure is optimized and utilized fdraonel
estimation in [4, 5, 6].

Blind and semi-blind estimators were used in[1, 7, 8, 9] toex t = L...

ploit also the payload data for channel estimation. Thesthodes
can be used to separate desired signals from interferimglisigind
noise, if the power levels are sufficiently different. Thea&bility
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turbations of large dimensional random matrices. We onbdn®
assume that the number of signals of interest is much snthber
the number of receive antennas at the BS. The results reljen t
exact asymptotic analysis of the interference-plus-neectrum.
The new separability condition provides accurate resuks &
situations where the approximation from [1] are inaccurate
Notations: The superscrip(~)H is the Hermitian transpose of

a matrix. We denote by the almost sure (a.s.) convergence.
The symbol3(z) stands for the imaginary part ef We denote by
CN (a,c?) the complex circular Gaussian distribution with mean
and variancer>.

2. SYSTEM MODEL

Consider a multicell multiuser MIMO system with a cell of ént
est andL neighboring interfering cells. Each cell contains one BS
equipped withM antennas and< single-antenna users. Consider
the uplink (reverse link) transmission where the BS of iegere-
ceives signals from all users in all cells. Lebe the length of the
coherence interval in samples. Thé x 1 received vector at time

, T is given by

L
yt = Hx; + ZHZXi +wy

=1

@)
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wherex, € C¥*! is the transmitted data vector with independent ! |]|j Er‘npirica‘u eige;wam; dist,il;utior
entries with zero mean and covariance maitix diag(Px, ..., Px) 0.8 P‘ —___ Maréenko—Pastur law |
with decreasingly ordered elemen®s > ... > Px representing '
the powers of the transmitted signals in the homée pBll € CM <& \
is the channel matrix between the BS and fieusers with inde- 2 0.6 |
pendent identically distributed (i.i.d.) entries with aemean and &
unit variance;x! € C¥*! is the interfering data vector in tHgh o 0.4 n
interfering cell with independerd@\ (0, I) entrieg; H' ¢ CM*X
is the channel matrix between the BS and the users of thel cell 0.2 =
with entries[H'],"" | ~ CN(0,1); w, € C"*! is the addi-
tive noise vector with independed@\/ (0, o) entries. Defining 0 —— :
- H H ) 0O 1 2 3 4 5 6 7T
xe=[(x1)",..., (x{)]" € C***! and concatenating succes-
sive samples of the received vectors given by (1), we obtain Eigenvalues oR
12 Fig. 1. Histogram of the empirical eigenvalues & and the
Y =HP "X+ H;X; +W (@) Martenko—Pastur law fabZ = 500, 7 = 1000, ¢ = 0.5, K = 2,

_p _ 2 _
whereY = [y1,...,y,] € CMX7 the matrixX € CK*7 hasiid. 1 =12 = 1/M,I =0, ando” = L.

entriesX; = [X1,...,%,] € CH 7 with [X/];,2, ~ CN(0,1),

_ 1pl LpL MXLK i M,LK ) ) ) ) )
Hy = HP,...HPY] ¢ C with [Hf]m,lzl sponding to the signal part. The main result of this papeviges a

CN(0,1), andW = [wi,..., w,] € CM*7 with [W]}'7_, ~  separability condition and is presented in the next seciitve proof

CN(0,1). is based on the asymptotic spectrum analysi$ZZH and the main
We assume in the following thaif and~ are largé and of the  steps will be given in Section 4.

same order of magnitude and define the asymptotic reginie by

00, such thatM /7 — ¢ € (0,00). K is assumed to be fixed as

M — oo. We define alsé such thatM/ /(LK) — ¢ € (0, c0). Note

that the definition of is more general than the assumption made in ) )

[1] where LK is implicitly assumed to be very small as compared Re€call the interference-plus-noise matdx= H;X; a W. Let

to M. The results of this paper are based on asymptotic spectr&f P€ the limiting spectral d'Str_'bUt'on (I:s.q.) &HZZ" with sup-

analysis of the sample covariance matrix definedo$ 1yvy* port denoted byupp(G) and with the Stieltjes transf(_)r‘h(ST) m
Write now the model (2) a¥ = A + Z whereA = HP'/2X \(/?;E\r::: ?r:(:\?:if tl;c}gltséchfr}?ct;zrgg}flrl).WIiDttre]flln: éh?wﬁgg: CSOT

is of small rankK with probability one and whose singular values i< janoted bymr anld_vthOSé sdpplortlis the ilnt'eévbdl, 22] (see

converge to/TMPx, ..., /TMPr asM — coandZ = H; X+ Theorem 2). Asmp(z) for z € C+ 2 {z € C,3z > 0} ad-

W has a rank equal tmin(M, 7) with probability one. In large . L ST . R T A

dimensional random matrix theory, this model corresponds $0- mlts an analytic contlnuathn ofw2, 00), we can defmenF?. =

called “spiked models” (see,g, [10]) whereZ is perturbed by the hmgHI; mr(x). The following theorem provides the condition for

small rank matrixA.. In order to understand the main idea, considerseparability and the limiting behavior of th€ largest eigenvalues

first the interference free case with = A + W where the matrix ~ of R.

‘W corresponds to the noise only part. A8 — oo, the spectrum of o

R converges to the Mar&enko—Pastur (MP) law [11] and is camgo Theorem 1. Letb be the upper bound efipp(G). Itis given by

of one bulk of eigenvalues. However, under some condition® 0 T )

up to K isolated eigenvalues referring to the presence of the kigna mg (w2 (1 - m)) o2(1—c)

matrix A can be found on the right side of the support of the MP = (1+ o2cmy)? 1+ o2emy @)

law. More precisely, if the smallest power satisfies the dgm

Pr > o?y/c/M [10], then all signal eigenvalues are asymptotically wherem, is the unigue solution ifm g, (1 — oemr,) ™, 0) of

separated from the noise eigenvalueds— co. That is illustrated

3. MAIN RESULT

in Figure 1 where the histogram is plotted for one realizatb’ Y m — 1 l—c 1 4
and where both signal powers satisfy the separability ¢immdi 2042z (m) (1 + o2em)’ mE(&(m))  2cx(m)  o2c
We come back now to the mod& = A + Z. As the ith

interference-plus-noise covariance matéxhas non i.i.d. entries, wi
the spectrum oR does not converge to the MP law and the con- —1( 1 o 1

oy o ) mp el Ul e a*(1—c)
dition of separability is not the same as above. Asymptbyica z(m) = il oem ,
the spectrum oR may consist of one or two bulks (depending on (1 +o%cm)? L+ o2em

the interference-to-noise ratid/, ¢, andé) representing noise and

_ 2 2 24
interference and, as above, of upAbisolated eigenvalues corre- §(m) = (1+o%em) ((1+07cm)z(m) —o” (1 - ¢)),

and
Ipathloss differences within the home cell can be absortiedn mll: (§(m)) = / Lt)z
2The equal interference variance from all neighboring aelfsresents a (t—&(m))
worst case scenario. Ongoing work considers the case whiereariance is
different in different cells. 4The STmy of a spectral distributior” with support inR denoted by
3Note that practical values d¥/ and are at the order of hundreds or supp(F) is defined bymg(2) = [(t — 2)"'dF(t). It is analytic on
thousands. C — supp(F) and completely characterizes the spectral distribufion
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Let m(x) be the analytic continuation of.(z) on (b, c0). Define
¢(x) 2 Mm(z) (cem(x) + ¢ — 1) decreasing frong (b™) to zero
on (b, c0). Let

1
Mmy (cbmp +¢c—1)°

Pim £ (5)

Letko € {0, ..., K} be the largest integer for whicKx, > Piim.

Let\; > --- > Ak be theK largest eigenvalues ®. If ko = 0,

then \; ML> b. Otherwise, fork = 1,..., ko, let p, be the
— 00

unigue solution in(b, o) of the equationP,¢(x) = 1. Then,

)\1—>p1,...,

a.s. as.
Ako —= Pho> @NAAgg 41 ———s b.
M — o0 M — o0 M — o0

From this theorem, ity among theK signals satisfies the sep-

arability condition having their powers strong enough ntltiee

largest eigenvalues @t will converge to limits located outside the

the unique real solution ofx1, z2] of
8cét’x’g® (x) — 8z (c+ & — c&) Eg° (x)

2(emn - - g CEEZD) )
(Ex—(c—1)(€—1))(c+&—2cc) +1=0

+ cckx

with¢ = 1/(LKI) andz; andz2 are two largest nonnegative so-
lutions of the equation
4CE§3x3 — f (100 ¢+ 10cé + 10c® — & — &
&)a” +2¢(4c°¢ + e + 4c8® — 2076 —
— 28 = P& —

—|—(c—1) (c—1)2(c—c) =

252

2.3 3 _ -3

¢ —¢ 02—62)1’

right side ofsupp(G). If ko = K then all the signals satisfies the Moreover, the ST dF, denoted byn , for z € R—[z1, 22}, satisfies

separability condition and the signal part is asymptolycseparated
from the interference-plus-noise bulk. Note that, in (5) is ob-
tained from arexactcharacterization of the upper bouhgin con-
trast to the approximate characterization provided in THe proof
is based on results of [12] and [13] and the main steps arédadin
the next section. Note that the valuesh@ndm; can be calculated
numerically by solving first the fixed point equation (4) irder to
getmy,.

One application of Theorem 1 is that the BS of interest can sup

press the interference-plus-noise by projecting the vedesample
matrix Y onto the eigendirections spanned by theargest eigen-
values ofR.
Py > ... > Py, then it follows thatp; > ... > pg, and thus
the BS can asymptotically associate the signal received eaeh
of the largest eigenvalues with its true transmitter. If tresmit

powers are the same, or if the asymptotic regime has not ldign f

approached in practice, pilot signals might be needed toectly

separate the users’ signals (aseng, [1, 8]). Notice that despite
the separation between interference-plus-noise, thals@ggenval-

ues contain residual interference and noise gnd> M Py; more

precisely, the remaining SNR ¥ Px /(pr — M Py).

4. MAIN STEPS OF THE PROOF OF THEOREM 1

The power limit (5) is obtained from an application of theules of

[12]. The main concern of the proof of Theorem 1 is the charac-
terization ofb andm,;. We start by presenting a result [14] on the

limiting probability density function of the eigenvaluet B; and
the ST of the corresponding |.s.d.

Theorem 2 ([14]). LetX; = 1H,X;X!{HY whereH; and X;
are defined as if2). LetM — oo, M/T — ¢ € (0,00) and
M/(LK) — ¢ € (0,00). The lLs.d. of¥; is given byF with
probability density composed of a point mass at zero thainlg o

vanishing formax{¢, ¢} > 1 and a continuous part with a compact

support. The continuous pagt(z) =
unique positive solution to

c(z)/m wherec(z) is the

—2C+6_2069(m)+ (c=1)(¢-1)—

cc ccx?

for z1 < & < z2 and0 elsewhere and the functigy{x) represents

If the users of interest have distinct transmit powers

the equatioh

x°cé 3 _x(c+6—206)m2 -

¢ mp () - F(z)
(c—l)(é—l)_m () — 1 —

+(7§ ) r(z)—1=0. 6)

Making use of this result, the asymptotic spectrum of the
interference-plus-noise part can be now characterized.

The following result on the |.s.d. of the interference-phase
covariance matrix is a direct application of [15] (Item 1ylaof [16]
(Item 2).

Theorem 3([15], [16]). LetZ = H;X; + W with H;, X;, and
W defined as in2). LetF be the I.s.d. o, = 1H,;X;X{HY
defined as in Theorem 2. Define

1
pIES ; (H[X[ + W) (H[X[ +W)H

Then:

1. AsM — oo, the empirical distribution function of the eigen-
values of3 converges weakly and a.s. to a non-random dis-
tribution function G whose STm(z), for z € C™, is the
unique solution of

m(z) = [ —
1+02cm(z)

such thatm(z) € C* andzm(z) € C*.

2. Recall supp(G) is the support ofG. For any interval
[d1,d2] C R — supp(G), there existM, such that for
all M > Mo,

dF(t)
— (14 02em(z))z+0%(1 —¢)
™

P{no eigenvalue ok appear in[d;, dz]} = 1.

Note that asn(z), z € C* admits an analytic continuation on
(b, ), we havem;, = lim,_,,+ m(z). Notice that depending on
the system parameters;pp(G) may be asymptotically composed
of one (the interference spectrum is mixed with the noisetspen)
or two intervals (the interference spectrum is separateth fthe
noise spectrum). The result of Item 2 means that asympligtica

5The sign difference in (6) as compared to that in [14] is duiaécdiffer-
ent definition of the ST used in [14].
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eigenvalues due to the interference-plus-noise part cpeagput-  bounds are derived by using the exact asymptotic spectrafysis

side ofsupp(G) with probability one. Hence, if isolated eigenvalues making it applicable for a wider range of practical situato

of R are observed on the right sidesafpp(G), they are only due to As future work, we will consider an extension to the scenario

the signal part. where a relative attenuation between the out-of-cell uaagsthe
The final part of the proof consists in derivation of Equasi¢®)  BS of interest is taken into account. In this case, the cokiofrihe

and (4) by using the results of Theorem 2 and Theorem 3. We skighannel matrix1; have different variances.

the details of th_e derivation vyhich is mainly based on thergxptic 1.10-2 ‘ :

support analysis performed in [15]. 0 B Empirical eigenvalues ot Yy

5. NUMERICAL RESULTS

In this section we provide simulation results that compheesepa-
rability regions of the proposed method with the resultsigf All

the matrix entries of the model (2) are assumed to have airgul

symmetric Gaussian entries. The signal powers are assiorissl t

all equalP, = ... = Px = P. Two cases with different noise

levels are considered. First, in Figure & is equal to—10 dB.

The ratio K/M is plotted versus the interference-to-signal power ‘

ratio I /P. The signal is separated from the interference-plus-noise 0 m 50 . ‘”‘H‘

Density

within the region delimited by the horizontal axis, the ieat axis, 0 40
and the curves. In this scenario, we observe that the newasgpa Eigenvalues O%YYH

ity region is wider than that of [1]. This means that the resti[1]
underestimates the size of the separability region andiginalscan
be still separated from the interference-plus-noise withe region
between the two curves. This is confirmed empirically by tise h
togram (obtained from 1000 realizations) of the sample iGamae 1072

Fig. 3. Empirical eigenvalues of YY" for 0> = —10dB, I/P =
0.2, K =2, L =500, 7 = 1000, andM = 1000.

matrix in Figure 3 by taking /P = 0.2 andK/M = 2 - 1072 (the ! T T T’heorem 1‘
point marked by a square in Figure 2). Inequality (50) of [1]
The second case considers a higher noise level for wiifch 08| A q
is equal to6 dB and the curves are plotted in Figure 4. The new )
bound is tighter than that of [1] meaning that [1] incorrggttedicts
separation between the signal and the interference-plise roulk s 1
which does not happen in practice. This is confirmed in Figuog 2 0.6~ 7
takingI/P = 0.4 and K/M = 2 - 10~ (marked by a square in
Figure 4).
0.4 A N
10-2
1 10 + T T
—a— Theorem 1 0.2 I 5 L |
—— Inequality (50) of [1] 0 0.2 0.4 0.6 0.8 1
0.8 |- - P
Fig. 4. Separability region fof = —24 dB, ¢ = 6 dB, L = 500,
7 = 1000, andM = 1000.
S 06| -
X
1-1072 -
0.4 - N 0 8 Empirical eigenvalues ok YY"
0.2 * = :
0 0.1 0.2 0.3 2
[}
/P g
Fig. 2. Separability region fof = —24 dB, ¢ = —10dB, L = e
500, 7 = 1000, and M = 1000.
6. CONCLUSIONS mnn
|
. . .. . 0
This paper analyzes asymptotic bounds on separability sifete 0 20 40

signals and interference-plus-noise from the sample @ovee ma-
trix in massive MIMO systems. Our results showed that thendsu
provided in [1] can be inconsistent at low SNR andfdarge which ~ Fig. 5. Empirical eigenvalues ¢f YY" for o = 6 dB, 1/P = 0.4,
is due to the approximations used in [1]. In contrast, theopsed K = 2, L = 500, 7 = 1000, andM = 1000.

Eigenvalues of YYH

3424



(1]

(2]

(3]

(4]

(5]

(6]

(7]

7. REFERENCES

R. R. Mulller, L. Cottatellucci, and M. Vehkapera, “Bll pilot
decontamination,IEEE Journal of Selected Topics in Signal
Processingvol. 8, no. 5, pp. 773-786, 2014.

T. L. Marzetta, “Noncooperative cellular wireless withlim-
ited numbers of base station antenndSEE Transactions on
Wireless Communicationgol. 9, no. 11, pp. 3590-3600, 2010.

J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanaiths;
lot contamination and precoding in multi-cell TDD systems,
IEEE Transactions on Wireless Communication®l. 10,
no. 8, pp. 2640-2651, 2011.

H. Huh, G. Caire, H. Papadopoulos, and S. Ramprashad,
“Achieving “massive MIMO” spectral efficiency with a not- [
so-large number of antenna$ZEE Transactions on Wireless
Communicationsvol. 11, no. 9, pp. 3226-3239, 2012.

H. Yin, D. Gesbert, M. Filippou, and Y. Liu, “A coordinate
approach to channel estimation in large-scale multipterara [
systems,IEEE Journal on Selected Areas in Communicatjons
vol. 31, no. 2, pp. 264-273, 2013.

E. Bjornson, E. Larsson, and M. Debbah, “Massive MIM® fo [
maximal spectral efficiency: How many users and pilots sthoul
be allocated?,to appear in IEEE Transactions on Wireless
CommunicationsAvailable: http://arxiv.org/abs/1412.7102.

H. Q.Ngoand E. G. Larsson, “EVD-based channel estinmatio [
for multicell multiuser MIMO with very large antenna arrdys
in ICASSR (Kyoto, Japan), 2012.

D. Neumann, M. Joham, and W. Utschick, “Channel es-
timation in massive MIMO systems.” Submitted. [Online]
http://arxiv.org/abs/1503.08691.

3425

(9]

(10]

(11]

(12]

13]

14]

15]

16]

J. Ma and L. Ping, “Data-aided channel estimation in ¢arg
antenna systemsJEEE Transactions on Signhal Processjing
vol. 62, no. 12, pp. 3111-3124, 2014.

J. Baik and J. W. Silverstein, “Eigenvalues of large plm
covariance matrices of spiked population modelsfirnal of
Multivariate Analysisvol. 97, no. 6, pp. 1382-1408, 2006.

V. A. Martenko and L. A. Pastur, “Distribution of eigeadues
for some sets of random matricedfathematics of the USSR-
Sbornik vol. 1, no. 4, pp. 457-483, 1967.

J. Vinogradova, R. Couillet, and W. Hachem, “Statiatim-
ference in large antenna arrays under unknown noise pattern
IEEE Transactions on Signal Processjngol. 61, no. 11,
pp. 5633-5645, 2013.

F. Chapon, R. Couillet, W. Hachem, and X. Mestre, “Thé ou
liers among the singular values of large rectangular random
matrices with additive fixed rank deformatiorylarkov Pro-
cesses and Related FieJdsl. 20, no. 2, pp. 183-228, 2014.

R. R. Miller, “A random matrix model of communicatiomav
antenna arrays,JEEE Transactions on Information Theory
vol. 48, no. 9, pp. 2495-2506, 2002.

R. B. Dozier and J. W. Silverstein, “Analysis of the limi
ing spectral distribution of large dimensional informatiplus-

noise type matrices,Journal of Multivariate Analysisvol. 98,

no. 6, pp. 1099-1122, 2007.

Z. D. Bai and J. W. Silverstein, “No eigenvalues outside
the support of the limiting spectral distribution of large-
dimensional sample covariance matricdhe Annals of Prob-
ability, vol. 26, no. 1, pp. 316—-345, 1998.



