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ABSTRACT

This paper addresses the problem of designing thinned arrays
with minimized side lobe levels for antenna selection in mil-
limeter wave MIMO systems. We propose a new optimization
solution based on compressed sensing techniques and convex
optimization relaxation which we show to be a heuristic that
solves the original binary optimization problem of side lobe
level minimization. We compare the proposed method with
other approaches from the literature like simulated annealing
and genetic algorithms showing the superiority of the method
in terms of performance, running time and ease of parameter
tuning. The simulation results cover a wide range of dimen-
sions and situations.

Index Terms— array thinning, convex relaxation, mil-
limeter wave MIMO

1. INTRODUCTION

Synthesis of sparse arrays deals with the design of non-
uniform antenna arrays with a minimum number of elements
whose radiation pattern complies with a given specification.
Reducing the number of elements with respect to a uniform
array brings several advantages, mainly reduction in power
consumption, weight and cost. In the last decades several
strategies have been proposed to synthesize sparse or thinned
arrays. All of them are based on heuristic methods like
genetic algorithms [1, 2], simulated annealing[6, 7, 8, 10],
dynamic programming [3, 4], etc. Techniques based on con-
vex optimization, and `1 norm minimization, have also been
proposed in [11, 12, 13, 14].

At milimeter wave (mmWave) frequencies, large MIMO
systems with steerable arrays have to be used to achieve the
desired directivity pattern. Antenna selection techniques have
been proposed at these frequencies as an alternative to phased
arrays due to their lower complexity and lower power con-
sumption [15]. Some antenna selection techniques have been
designed to effectively estimate the MIMO channel using
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compressive measurements or to steer the beam in a given
direction [15]. Another mmWave application making use of
antenna selection is antenna secure modulation (ASM) [16].
It is a physical layer security technique that imposes artifi-
cial randomness in the constellations received in undesired
directions. Randomness in the constellations is achieved by
activating a random number of the available array antennas.

In these mmWave MIMO systems when making use of
antenna selection [15, 16] a common problem appears: there
are many subsets of antennas of a given size with a similar
main lobe but with side lobes that can be quite different. An
interesting question is how to choose the M active antennas
out of theN antennas in the array such that the side lobe levels
are minimized in some sense. The traditional algorithms for
synthesis of sparse arrays [1, 2, 3, 4] however do not deal with
this question, because their goal is minimizing the number of
elements, considering some constraints which account for the
the specifications of the desired beampattern. In antenna se-
lection at mmWave frequencies the goal is not to minimize the
number of antenna elements, since that is a fixed parameter in
the MIMO system, but finding the subset with a minimum
side lobe level between all the subsets sharing a similar main
lobe. The idea is to create codebooks of antenna subsets with
low side lobes, so that the active antenna patterns are selected
from these dictionaries.

This paper describes an algorithm for the design of
thinned arrays with low peak side lobe levels for antenna se-
lection in mmWave MIMO systems. The proposed method is
based on convex optimization techniques involving reweighted
`1 norm regularization. We choose specific weights to deal
better with the binary nature of the optimization problem,
applied on the convex relaxation of the original discrete opti-
mization problem. We formulate the main problem as an `∞
optimization problem. We show that the proposed solution
solves a norm maximization optimization problem and per-
forms better than simulated annealing or genetic algorithms.

2. ARRAY THINNING FOR ANTENNA SELECTION

We seek to solve the following discrete, non-convex, opti-
mization problem over the “on-off” coefficients of each array
element:

minimize max |SLL| (1)
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where SLL stands for side lobe level, and max |SLL| =
max
θ∈Ω

|F (θ)| where F (θ) is the array factor and Ω is the

set of angles where we are interested in the minimization,
outside the main lobe range. The results are shown in dB,
|SLL|2dB = 20 log10 |F (θ)|, but the problem equivalently uses
|F (θ)|.

The synthesis of thinned arrays is a combinatorial opti-
mization problem (due to the binary nature – select or not
a particular antenna in the array) and has received extensive
attention in the past. The effects of array thinning are un-
derstood when considering the array gain and the main lobe
width but little can be said analytically in general about the
side lobe levels. Because exhaustive search is not realistic for
large N and M , the search space is

(
N
M

)
= N !

M !(N−M)! , in
the past solutions like genetic algorithms (GA), dynamic pro-
gramming (DP), simulated annealing (SA) and convex opti-
mization have been proposed.

The convex optimization approach in [11] also deals with
a reweighted `1 optimization problem but in that case the
beamforming vector is the working variable. In our case, the
beamforming vector is fixed for example by the ASM tech-
nique in [16] and the only working variable is binary and has
its support of fixed size, hence a binary optimization problem.

3. THE PROPOSED SOLUTION

In this paper we describe a method for array thinning based on
compressed sensing ideas, namely the Iteratively Reweighed
`1 (IRL1) [17] convex optimization formulation. First, let us
define the working variables. We denote by HΩ the matrix
of size |Ω| × N that contains all the steering vectors corre-
sponding to a given array geometry and to the directions for
which SLL minimization takes place for angles θi ∈ Ω on
a discrete grid HH

Ω =
[
h(θ1) h(θ2) . . . h(θ|Ω|)

]
. Re-

gardless of the antenna array structure the design constraints
are contained in HΩ. Thus, the discretized minimization of
the SLL with antenna selection becomes:

minimize
b;

∑N
k=1 bk=M, bk∈{0,1},

‖HΩb‖∞ (2)

where ‖y‖∞ = max
i
|yi| is the `∞ norm and the binary vari-

able b denotes the antenna selection pattern and is constrained
to the selection of M out of the N antennas. This objective
function deals directly with the radiation pattern of the ar-
ray and is equivalent to the objective in (1). Although we
would like to solve an L∞ problem over all possible direc-
tions, we instead solve the tractable, finely discretized, `∞
problem without significant loss in accuracy. Due to the bi-
nary variables, this formulation is still non-convex. We relax
the binary constraints in (2) to the convex problem [9]:

minimize
b;

∑N
k=1 bk=M, bk∈[0,1]

‖HΩb‖∞ +M−1wT b (3)

Algorithm 1 – Array thinning by CR+LS.
Input: The design matrix HΩ ∈ C|Ω|×N , the number of ac-
tive antennasM , the number of iterationsK and the length of
the local search step `.
Output: Selection pattern b such that the SLL is reduced.

Convex Relaxation (CR) step:
1. Set w = 1.
2. For maximumK iterations (or until convergence of w):

• Solve (3) with weights w.

• Update w: wk = 1− bk for k = 1, . . . , N .

3. Establish the support of b:

K = {k | bk > ε with k = 1, . . . , N}.

4. If necessary, reduce the support size |K| to M :

for |K| down to M set K = K \ {k∗} with
k∗ = arg min

K′=K\{k} for each k∈K
‖HΩ1K′‖∞

Local Search (LS) step:
1. Start a local search close to the set K:

{A,Z} = arg min
A⊂{K(c)∪Z},|A|=`

‖HΩ1K\Z∪A‖∞

for each set Z = {z1, . . . , z`} ⊂ K, |Z| = `.

2. Set K = K \ Z ∪ A and return b = 1K.

The regularization term, the second term in the objective, acts
as a reweighted `1 penalty (just sum since b is non-negative)
that is simplified due to the N positivity constraints, i.e.,
‖Wb‖1 =

∑N
k=1 wkkbk = wT b where w = diag(W ) are

the weights on the diagonal W . Initially, the weight vector is
w = 1, the constant vector, leading to the classical `1 penalty
regularization. Since we solve (3) in an iterative fashion, after
the first step, the new weights are w = 1− b. These weights
force entries of the solution b that are close to zero to be
driven exactly to zero while the larger entries are allowed to
reach magnitudes as high as possible (in this case up to one).
We do expect this relaxation to lead naturally to the discrete
structure of b. The weights w originate from:

wk = 1− |bk|‖b‖−1
∞ , (4)

adapted to our particular case. If the solution converges after
the K steps then notice that the penalty term is a stationary
point of 1T b−‖b‖22‖b‖−1

∞ which in our case reduces to M −
‖b‖22 assuming that at least one entry in b is one. Thus the
heuristic with the proposed weights is trying to solve a norm
maximization problem for which the binary solution achieves
its highest objective function value. To describe the algorithm
it is convenient to introduce a set notation. We denote b = 1K
a binary vector with ones in the positions indexed by the set
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Fig. 1: Array thinning with N = 35, M = 20 and transmis-
sion angle θT = 36◦ in an ASM environment. SA achieves
-14.5663 dB and the proposed CR+LS approach achieves -
17.2095 dB maximum side lobe level. The global minimum,
check via exhaustive search, is actually the level reached by
CR+LS. Only CR reaches -16.9377.

K, |K| = M denotes the size. The setK(c) is the complement.
The proposed iterative procedure is presented in Algo-

rithm 1. We solve problem (3) using updated weights w for
a fixed number of K iterations. After the iterative process
is over we compute the support of the solution b in the set
K. The first goal is to bring the size of the support down to
M . Due to the relaxed constraints on the entries of b it is
always true that the support of the solution is larger than or
equal to M , but never smaller. After the size of the support is
brought down to M a local search is started that finds the best
replacement of size ` to the support such that the objective
function is maximally minimized. This is indeed a combi-
natorial search so values of ` should be relative small. This
extra search step is applied in order to make an additional re-
duction in the objective function by exploiting the fact that a
good starting support (the one previous computed by CR) is
available. In general we do not expect this step to produce a
large improvement in the solution but as we will see there are
situations in which this step helps lower the objective func-
tion. Of course, larger ` can only lead to better performance
but the running time cost might be prohibitively large.

4. RESULTS

Figure 1 shows the radiation patterns of a thinned array de-
signed via Simulated Annealing (SA) and one designed via
the proposed CR+LS method. The result is for an ASM based
system with N = 35 and M = 20 with a target angle at θT =
36◦ and the discretized grid has |Ω| = 271 points. There is an
approximate 3 dB performance gap that favors CR+LS. Actu-
ally the solution reached by CR+LS is the global minimizer in
this case. The local search run with parameter ` = 3 and does
help decrease the SLL. The CR step always runs for K = 7
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Fig. 2: Maximum SLL (dB) for N = 35 and various M ∈
{3, . . . , 32}. For these small dimensions the SA performs
close to the proposed approach CR+LS and in some situations
the local search (LS), with ` = 4, is important to outperform
or match SA in all cases.
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Fig. 3: Maximum SLL (dB) for N = 64 and various M ∈
{6, . . . , 58}. The local search parameter is ` = 3.

iterations.
We further analyze by simulations the behavior of the pro-

posed algorithm as compared with the literature. In Figure 2
we show for fixed N = 35 and variable M the performance
of the most popular algorithms in the literature: GA and SA.
We keep the same experimental setup as for Figure 1 but the
proposed CR and CR+LS methods can be easily extended to
various other problems or antenna configurations (for exam-
ple uniform and non-uniform linear or planar arrays). All de-
pends on the design matrix HΩ.

The GA approach performs the worst. Indeed in this case
there are many parameters that can be tuned: the number
of generations, the population, the selection mechanism, the
cross-over method, the mutation procedure just to name a
few. We followed the ideas from [1] to design the GA but
performance is still quite poor when compared to the other
approaches. The algorithm runs for 100 generations with a
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Fig. 4: Maximum SLL (dB) for N = 128 and various M ∈
{12, . . . , 116}. The local search parameter is ` = 2 but the
LS step is not necessary in any case to outperform SA.

population of size 105.
SA performs much better and actually is quite close to the

performance of the proposed method. We follow mostly the
approach in [10]. The perturbations to the solutions guaran-
tee that the number of active antennas is always M through-
out the optimization procedure while an exponential cooling
scheduling seems to produce the best performance (this was
check by extensive simulations). The parameters that were
used are: the number of iterations is 5 × 105, the initial tem-
perature is T = 104 and the cooling factor is β = 0.98. We
keep the best solution that is reached.

In the case of N = 35 the performance gap between SA
and CR or CR+LS is not very big. Figures 3 and 4 further pro-
vide experimental results for larger N ∈ {64, 128}. In these
cases the performance gap between CR+LS and SA increases.
Notice that SA performs quite well when the search space
is relatively small, i.e., small N and/or M close to N . The
largest performance gap seems to be in the case of M ≈ N/2
when the combinatorial search space is the largest. Notice
that there are several cases in which the SA actually produces
a solution as good as the one provided by CR+LS. Actually, in
a few cases like N = 64 and M ∈ {40, 56, 57} SA performs
slightly better, 0.4 dB better. In all the other cases CR+LS
outperforms SA. The results of GA are now shown since they
are always the worst. In the last simulation result we show in
Figure 5 the histogram of side lobe levels for the antenna se-
lection designed for N = 35 and M = 20 via CR+LS whose
radiation pattern is shown in Figure 1. In Figure 5 we notice
the effect of the `∞ norm minimization: most side lobe levels
occur close to the maximum value of -17.2095 dB.

The running times of the proposed methods are also stud-
ied. For example, notice that as the size N increases we de-
crease the length of the local search ` such that to keep the
running time under control. The optimization problem at the
heart of CR is affected only by the choice ofN and not by that
of M . The running times of the full CR step are on average
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Fig. 5: Empirical side lobe level histogram for the antenna
selection designed via CR+LS with N = 35 and M = 20.

approximately: 4.5 seconds, 7.1 seconds and 15.2 seconds
for N = 35, N = 64 and N = 128 respectively. The imple-
mentation uses Matlab 2014a© and the convex optimization
library CVX. We take into account the extra formatting time
that CVX uses to formulate the optimization problem for the
underlying solver. If speed is of any concern then new de-
velopments involving fast iteratively reweighted `1 based on
homotopy can be deployed [20]. GA and SA running times
depend on the selected parameters. For example, SA with the
parameters described in this paper has on average the follow-
ing approximate running times: 100 seconds forN = 35, 110
seconds for N = 64 and finally 130 seconds for N = 128.

An additional difficulty when using GA and SA is the rel-
atively high number of choices (parameters, selection proce-
dures etc.) that needs to be made. All these choices have an
important effect upon performance. In the case of CR there
are virtually no parameters. One might argue that a regular-
ization parameter λ might be added to the optimization prob-
lem (3). The overall idea when tuning this optimization prob-
lem is to adjust it such that the sparsity of the solution is close
to M , possibly equal. This avoids the use of the heuristic step
to reduce the support to M .

5. CONCLUSIONS

This paper describes an algorithm for the design of thinned
arrays for antenna subset modulation that minimizes the side
lobe levels. The method is based on ideas from convex op-
timization and compressed sensing and can be considered a
relaxation of the original discrete non-convex optimization
problem. We test the proposed approach against other meth-
ods in the literature and show its effectiveness both in terms of
performance and running time. We also underline the simplic-
ity of the method, which virtually needs no parameter tuning.
Here the simulations involve only uniform linear arrays, but
the method can be easily applied to different array types.
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