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ABSTRACT

We consider the problem of channel estimation for millime-
ter wave communications (mmWave). We formulate chan-
nel estimation as a structured sparse signal recovery problem,
in which the signal structure is governed by a priori knowl-
edge of the channel characteristics. We develop a Bayesian
group sparse recovery algorithm which takes into account for
several features unique to mmWave channels, such as spa-
tial (angular) spreads of received signals and power profile
of rays impinging on the receiver array. We validate the de-
veloped method via numerical simulations and demonstrate
an improved estimation performance relative to the existing
methods.

Index Terms— Bayesian sparse recovery, structured
sparsity, mmWave, channel estimation

1. INTRODUCTION

There has recently been an increased interest in mmWave
communications (mmWave) as a result of high throughput
capabilities offered by mmWave frequency bands [1]. Ad-
vances in hardware design have made it possible to design
large arrays and use beamforming techniques to overcome
the effects of increased path loss at higher frequencies. There
is also an increased burden on system hardware in mmWave.
Power consumption due to RF chains is significantly in-
creased due to higher frequencies of operation. Moreover,
one must account for Analog-to-Digital (ADC) converter
cost considerations during system design and analysis. Con-
sequently, beamforming is carried out in the RF regime by
using analog phase shifters, or by using hybrid schemes [2].

Previous work on channel estimation in the mmWave
region has exploited sparsity in the number of multipath com-
ponents, and accounted for ADC related constraints. In [2],
the authors cast the channel estimation problem as a sparse re-
covery problem. In this formulation, the measurement matrix
consists of vectors a(θtx, θrx), which are parameterized by
Direction-of-Departure (DoD) θtx and Direction-of-Arrival
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(DoA) θrx. The unknown, sparse signal vector contains
non-zero channel coefficients at coordinates corresponding
to (θtx, θrx). However, such an approach does not account
for the structured sparsity of the signal, which is inherent
to mmWave. Alternatively, recent work in structured sparse
recovery using Bayesian approaches [3], [4] enforce graph-
ical model priors on signal sparsity to recover structured
sparse signals, but these models do not accurately model the
mmWave channel properties of interest.

Some features unique to mmWave are as follows. There
is a low number of multipath components due to high path
loss. However, due to high reflectivity, there is a spread in Di-
rection of Arrival (DoA) of rays within each multipath, called
a ‘cluster’. In convential communication systems, arrivals at
the receiver array are localized to a small angular region in
space. In contrast, in the mmWave regime, rays impinging on
the receiver array are spatially clustered in a continuous band
of angles. Although previous work has explored several dis-
tributions to model DoA spread [5], and tried to quantify the
extent of this spread using Fourier Series based statistics [6],
these properties have not yet been exploited for mmWave sys-
tem design. Furthermore, the powers of these clustered rays
follow a power profile, governed by the channel model. The
methods in this paper may also be extended to exploit spread
in Directon of Departure (DoD), but we leave this for future
work.

In this work, we focus on the problem of channel esti-
mation for mmWave. We utilize the approach of [2] in sens-
ing the channel which accounts for hardware constraints. Our
novel contribution may be summarized as follows.

1. We formulate channel estimation as a group sparse re-
covery problem.

2. We develop a Bayesian algorithm which recovers the
group sparse channel, thereby accounting for an impor-
tant feature of mmWave - DoA spread. Our algorithm
also allows one to exploit knowledge of the power pro-
file of each cluster arrival.

Thus, the estimation algorithm is intimately matched with the
channel model, and exploits the wealth of knowledge about
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the channel available to us from various measurement cam-
paigns.

The channel model relevant to mmWave is IEEE 802.11ad,
whose complete statistical characterization is still underway.
Fortunately, it has been discovered that the IEEE 802.11ad
channel is similar to the well studied IEEE 802.15.3c chan-
nel model [1]. In this work, we employ a channel model
similar to the IEEE 802.15.3c, and highlight distributions
corresponding to properties of interest. However, the analysis
presented here can be easily adapted to other channel models,
so long as a statistical description of the channel model is
available.

2. CHANNEL MODEL

Table 1 summarizes important parameters of the channel. The
received energy arrives in clusters, whose number nc is uni-
formly distributed between 1 and cmax, which is environment
dependent. Cluster i has DoA spread of ∆θi at the receiver,
which is centered at, and symmetric about the cursor. The
cursor powers decay exponentially with time of arrival, and
intracluster ray powers decay exponentially with angular dis-
tance from the cluster. The corresponding virtual channel ma-
trix, illustrated in Fig. 1, is given by

H = A(Θrx)HsA(Θtx)
H , (1)

where Θtx = [θtx,1, ..., θtx,ntx ] and Θrx = [θrx,1, ..., θrx,nrx ] are
the DoDs and DoAs of the existing multipath components in
the channel, andA(Θrx), A(Θtx) are matrices whose columns
{a(θtx,i)}ntx

i=1, {a(θrx,i)}nrx
i=1 are manifold vectors correspond-

ing to the respective DoD and DoA.

3. CHANNEL SENSING METHOD

The transmitter applies precoders {pi}mi=1 to the symbol t = 1
inm successive snapshots. The receiver employs correspond-
ing mixers {qi}mi=1. In this work, we assume random precod-
ing and mixing vectors with ±1, ±j elements, as in [2]. The

Parameter Variable Expr./Distrib.

Max. number of clusters cmax fixed
Realized number of clusters nc Unif({1, . . . , cmax})
DoA spread ∆θ

|N (0,σ2
sp)|

Φ([−π/2,π/2],0,σ2
sp)

Cursor arrival times tc Γe−t/Γ

Cursor power pc γe−t/γ

Intracluster power decay pθ,c e|θ−θ0|/δ

Ray amplitudes hθ,c CN (0, pθ,c)

Table 1. Parameters of the channel model. Γ, γ and δ
are environment dependent model parameters. The term
Φ([−π/2, π/2], 0, σ2

sp) denotes the area between [−π/2, π/2]
under Gaussian density of mean 0 and variance σ2.

channel coefficients, #Tx = 48, #Rx = 48

transmit angle/ DoD (deg)
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Fig. 1. Plot of |Hs| (single realization). Rows correspond to
DoD and columns to DoA. Rays arrive clustered spatially at
the receiver, so that non-zero components are group sparse.

ith observed data snapshot is
yi =

√
ρqHi Hpit+ qHi z

=
√
ρqHi A(Θrx)HsA(Θtx)

Hpit+ ei, (2)
where ρ is the SNR, where ei ∼ CN (0, σ2

n) is the measure-
ment noise, and H , A(Θrx), A(Θrx) and Hs are as defined in
(1). From properties of the Kronecker product, we know that
for any matrices A,B,C, [7, Theorem 13.26]

vec(ABC) = (CT ⊗A)vec(B), (3)
where the vec(·) operation rearranges the elements of its
operand columnwise into a vector. Using (3) in (2), we get
yi =

√
ρ(pTi ⊗ qHi ) (A(Θtx)

∗ ⊗A(Θrx)) vec(Hs) + e (4)
Stacking up the m data snapshots into a vector, we get: y1

...
ym


︸ ︷︷ ︸

:=y

=
√
ρ

p
T
1 ⊗ qH1

...
pTm ⊗ qHm

 (A(Θtx)
∗ ⊗A(Θrx))

︸ ︷︷ ︸
:=A

vec(Hs)︸ ︷︷ ︸
:=x

+e.

(5)
In (5), A is a measurement matrix, which is unknown. There-
fore, we generate a dictionary of possible DoDs, Θtx =
{θtx,1, θtx,2, . . .} and DoAs Θrx = {θrx,1, θrx,2, . . .}. The
angles Θtx and Θrx may not contain the true DoD and DoA,
which may lead to grid mismatch. A complete analysis of the
effects of grid mismatch is beyond the scope of this work;
see, for e.g. [8]. We proceed by selecting Θtx and Θrx such
that sin Θ ={
{−n−2

n ,−n−4
n , . . . , −2

n , 0,
2
n ,

4
n , . . . , 1} if n even

{−n−1
n ,−n−3

n , . . . , −2
n , 0,

2
n ,

4
n , . . . ,

n−1
n } if n odd

.

These angles correspond to the peak of the mainlobe, and
nulls of the uniform linear array beampattern. With some
abuse of notation, henceforth we denote the resulting dictio-
nary matrix also by A. Due to our choice of Θtx and Θrx, A is
completely incoherent [9], i.e., given its ith and jth columns,
ai and aj , we have that aHi aj = 0 for i 6= j. Vector x in (5)
contains 0 at entries corresponding angles not present in the
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multipath departure/arrival structure. A vectorized version of
the matrix in Fig. 1 is representative of the sparsity structure
of x.

4. CHANNEL ESTIMATION VIA BAYESIAN
INFERENCE

Recollect that we wish to find x̂, an estimate of x observed
according to (5). Let s be the indicator for the support of x,
given by

si =

{
1 if xi 6= 0

0 if xi = 0
for i = 1, . . . , n. (6)

Let As and xs denote the subset of the corresponding matrix
or vector for which si = 1. The conditional density of data,
due to Gaussian noise statistics is

p(y|xs, s) =
1

(πσ2
n)n

exp

{
−||y −Asxs||

2
2

σ2
n

}
. (7)

The density of xs given the support s is

p(xs|s) =
1

|πΣs|
exp

{
−xHs Σ−1

s xs
}

(8)

where Σs is signal covariance matrix. The density of data
given the signal support configuration is given by p(y|s) =∫
xs
p(y|xs, s)p(xs|s)dxs. Define

Qs := AHs As + σ2
nΣ−1

s .

Then computing p(y|s) gives us

p(y|s) =
(πσ2

n)(s−n)

|πΣs||Qs|
1
2

exp

{
−||y||

2
2 − yHAsQ−1

s AHs y

σ2
n

}
.

Let P(s) be prior probability of support s. From (4), the log-
arithm of the posterior probability of s given data y, P(s|y)
is

logP(s|y) ≡ yHAsQ
−1
s AHs y

σ2
n︸ ︷︷ ︸

data term

− log det(πΣs)︸ ︷︷ ︸
signal power term

−

(n− s) log(πσ2
n)− 1

2
log |det(Qs)|+ logP(s)︸ ︷︷ ︸

prior

. (9)

We propose a method to compute P(s) below.

4.1. Computation of Support Prior P(s)

We may partition s defined in (6) into blocks of length nrx, as
s =

[
s1 . . . sntx

]T
, i.e., support indicator corresponding

to columns of Hs. Let ci be the indicator of cluster presence
in column i, for i = 1, . . . , ntx, and c =

[
c1 . . . cntx

]T
.

We now compute P(s). We have that
P(s) = P(s|c, nc)P(c|nc)P(nc). (10)

From the distribution of nc specified in Table 1, we have
P(nc) = 1

cmax
. Since the clusters are distributed randomly

from among the ntx columns of Hs, P(c|nc) = 1
/(

ntx

nc

)
,

where
(
ntx

nc

)
denotes “ntx choose nc”. Finally, since we

have assumed that there is no spread in DoD, P(s|c, nc) =∏
i:ci=1 P(si|ci, nc). Since signal energy is present in a con-

tinuous band of angles around the cursor, locations in which
si = 1 occur contiguously. Therefore, we only need to
compute probabilities of the form

P(si = [0, ..., 0, 1︸︷︷︸
j

, ..., 1︸︷︷︸
j+k

, 0, ..., 0]|ci, nc). (11)

Let φ := sin(θ), and ∆φw be the resolution of the dictionary
sin(Θrx). For our choice of Θrx in Section 3, ∆φw = 2/n.
Consider (11), in which a cluster spans from index j to j +
k. Since the DoA spread is centered at the cursor, sine-DoA
of the cursor φ0 corresponds to index (j + k)/2, pre-cursor
spread ∆φ− to indices j to (j + k)/2 − 1, and post-cursor
spread ∆φ+ to indices (j + k)/2 + 1 to k. This computation
is illustrated in Fig. 2. Therefore, probability of this cluster is
given by (12).

distance from cursor : sin(θ) - sin(θ
c
)
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Fig. 2. Support prior computation. The plot shows a cluster
with cursor at 0o and DoA spread ∆θ. The cluster corre-
sponds to 5 non-zero support locations, so that k = 4. We see
that DoA spreads are in [±(3/2)∆φw,±(5/2)∆φw] as given
by (13).

Since DoA spread is symmetric about the cursor, and in-
dependent of cursor location from Table 1,

P(si|ci, nc) = 2P
(

∆φ+ ∈
[
k − 1

2
∆φw,

k

2
∆φw

])
.

(13)
This probability can be computed directly from the density of
∆θ in Table 1, which completes the computation of P(s). Fur-
thermore, notice that (9) involves a signal power term. The
channel model specifies the ray power decays exponentially
with angular distance from cursor, which can be used to adap-
tively assign powers to estimated channel coefficients. The
overall MAP inference procedure is described in Algroithm 1.
The exact MAP estimate requires searching for ŝ∗ over the
{0, 1}n space, which is exponentially complex [4, 10]. There-
fore, we resort to a suboptimal search to find the MAP es-
timate. We add one new support location in each iteration,
using the channel model to guide the search, by not consider-
ing locations corresponding to 0 prior probability, as in Steps
5− 11 of the algorithm.

3408



P

(
∆φ− ∈

[
φ0 −

k

2
∆φw, φ0 −

k − 1

2
∆φw

]
,∆φ+ ∈

[
φ0 +

k − 1

2
∆φw, φ0 +

k

2
∆φw

] ∣∣∣∣∣φ0 = φ j+k
2

)
(12)

Algorithm 1 Channel Model Based Inference.
1: Inputs: σn, itermax

2: ŝ(0) ← 0 ∈ Rn . support indicator
3: for i ∈ {1, 2, . . . , itermax} do
4: J ← {j : ŝ(i−1),j = 0}
5: Discard j ∈ J such that P(ŝ(i−1) ∪ sj = 1) = 0
6: for j ∈ J do . loop over unselected indices
7: ŝ

(j)
(i) = ŝ(i−1) ← 1, sj ← 1

8: Set Σs of according to power profile in Table 1
9: val

(j)
(i) ← logP(s

(j)
(i) |y) . compute from (9)

10: end for
11: j∗ ← arg maxj∈Jcand

{val
(j)
(i)}

12: max post(i) ← val
(j∗)
(i)

13: ŝ(i) ← s
(j∗)
(i)

14: end for
15: i∗ ← arg maxi{max post(i)}
16: ŝ∗ ← arg max(i) ŝ(i) . MAP over all iterations
17: x̂← A†s∗y

5. NUMERICAL SIMULATIONS AND RESULTS

We quantify channel estimation performance using normal-
ized mean squared error, defined as NMSE =

||x̂−x||22
||x||22

.
For each value of SNR, we generated 35 channel and noise
realizations, computed average NMSE over all realizations.
Fig. 3 plots the NMSE vs SNR for Bayesian algorithm and
channel estimation using OMP [11]. The expected sparsity
of the signal is 0.0098. We see a performance gain of around
2 dB at lower SNRs. We highlight here that measurement
matrix A was completely incoherent, which along with the
low sparsity of x, is a regime in which OMP is proved to
perform well. Furthermore, Bayesian approach requires no
knowledge of signal sparsity. Fig. 4 plots the estimated chan-
nel employing OMP and our algorithm for a single noise
realization, at SNR = 3dB, for the same setting as in Fig. 3.
This plot highlights the reason underlying the performance
gain of the Bayesian algorithm at low SNRs. OMP does not
favor grouped signal support over distributed signal support,
and hence selects few erroneous support locations. How-
ever, the channel based prior P(s) in the Bayesian algorithm
encourages it to select contiguous support locations, since
arrivals are spatially clustered. At high SNRs, both OMP and
the Bayesian algorithm pick the correct support locations,
and therefore, yield similar performance.
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Fig. 3. NMSE estimation performance of our algorithm
and OMP vs SNR, for a system with 48 transmitter and re-
ceiver elements, and m = 750, and avg. channel sparsity
0.0098. (“Model support, model power” refers to proposed
algorithm.)
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Fig. 4. Stem plot of recovered channel coefficients for a single
trial in the setting of Fig. 3 at SNR = 3dB.

6. CONCLUSION

We have considered the problem of channel estimation for
mmWave, which we formulated as a group sparse recovery
problem. We have designed a Bayesian estimation algo-
rithm which accounts for several distinguishing properties of
mmWave, particularly the DoA spread and power profile of
spatially clustered signal arrivals. Our algorithm improves
channel estimation performance compared to state of the art
by 2 dB at low SNRs, which is the regime of interest in
most communication systems. Additionally, the proposed
Bayesian framework does not require knowledge of signal
sparsity, but utilizes channel model for structured signal re-
covery.
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