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ABSTRACT

We investigate the performance of wideband massive MIMO base
stations that use one-bit ADCs for quantizing the uplink signal. Our
main result is to show that the many taps of the frequency-selective
channel make linear combiners asymptotically consistent and the
quantization noise additive and Gaussian, which simplifies signal
processing and enables the straightforward use of OFDM. We also
find that single-carrier systems and OFDM systems are affected in
the same way by one-bit quantizers in wideband systems because
the distribution of the quantization noise becomes the same in both
systems as the number of channel taps grows.

Index Terms— massive MIMO, OFDM, one-bit ADCs, quantiza-
tion, wideband.

1. INTRODUCTION

A one-bit Analog-to-Digital Converter (ADC) is the simplest device
for quantization of an analog signal into a digital. It is the least
power consuming quantizer, since the power consumption of ADCs
grows exponentially with the number of bits needed to represent all
quantization levels [1]. One-bit ADCs would also simplify the analog
front end, e.g., automatic gain control would become trivial. One-
bit ADCs just output the sign of the input signal, all other informa-
tion is discarded. The use of such radically coarse quantization has
been suggested for use in massive Multiple-Input Multiple-Output
(MIMO) base stations, where the large number of radio chains makes
high resolution quantization very power consuming [2]. Recent stud-
ies have shown that the performance loss due to the coarse quantiza-
tion of one-bit ADCs becomes less severe as the number of receiving
antennas grows; and, in a massive MIMO base station that has hun-
dreds of antennas, the power saving that comes with one-bit ADCs
might well outweigh this performance loss [3–5].

Pioneering work on the performance achievable with one-bit
ADCs was done in [6–8]. These works and most studies of one-
bit ADCs since have focused on narrowband systems that have
frequency-flat channels. Whether the results also hold for wide-
band systems, whose channels more realistically are modeled as fre-
quency selective, is not clear from the cited literature.

Here we highlight that, when the number of channel taps is large,
quantization noise due to one-bit ADCs is effectively additive and
circularly symmetric Gaussian, and affects a system that uses or-
thogonal frequency division multiplexing (OFDM) the same way it
affects a single-carrier system. As a consequence OFDM can easily
be implemented in the same way as in the unquantized system. We
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Fig. 1. The system model for both single-carrier (dashed IFFT and
FFT are not used) and OFDM transmission (dashed boxes are used).

also show that the averaging effect of having multiple samples from
many antennas, which enables the use of one-bit ADCs, is even more
effective in a wideband system, where averaging is also done over
time due to the frequency selectivity of the channel.

In contrast to the unquantized case, sampling at rates higher than
the Nyquist-rate might lead to improved performance in a quantized
system [9]. The power consumption of the ADC, however, increases
proportionally with the sampling rate [1]. This study is limited to
the study of the extreme case, where sampling is done at Nyquist-rate
and quantizing is done with one-bit resolution. Related work on low-
order ADCs with frequency-selective channels considered nonlinear
detection algorithms, either with single-carrier transmission [10] or
with OFDM [11]. In contrast, we study a general system that uses
simple combiners that are linear in the quantized signals, both for
single-carrier and OFDM transmission.

2. SYSTEM MODEL

We consider the uplink of the massive MIMO system in Figure 1,
where the base station has M antennas and there are K single-
antenna users. The system is modeled in complex baseband and
the signals are uniformly sampled at the Nyquist-rate with perfect
synchronization.

The users transmit the signals x[n] , (x1[n], . . . , xK [n])T at
symbol duration n over the frequency-selective channel that is de-
scribed by the L-tap impulse response {H[`]}L−1

`=0 , where H[`] is an
M×K-dimensional matrix. The elements {hmk[`]}L−1

`=0 at position
(m, k) form the impulse response between user k and base station
antenna m. To study a wideband scenario, the number L is assumed
to be in the order of tens. For example, a system that uses 15 MHz
of bandwidth over a channel with 1 µs of maximum excess delay,
which corresponds to a moderately frequency-selective channel, has
L = 15 channel taps, cf. [12], where the “Extended Typical Urban
Model” has a maximum excess delay of 5 µs. The received signal at
antenna m at symbol duration n is

ym[n] ,
K∑

k=1

L−1∑
`=0

√
Pkhmk[`]xk[n− `] + zm[n], (1)

where zm[n] ∼ CN (0, N0) models the thermal noise of the base
station hardware and Pk is the transmit power of user k.
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Upon reception, the in-phase and quadrature signals are sepa-
rately quantized, each by a one-bit ADC:

q
(
ym[n]

)
,

1√
2
sign

(
Re ym[n]

)
+ j

1√
2
sign

(
Im ym[n]

)
. (2)

Here the threshold of the one-bit ADC is assumed to be zero. Other
thresholds are also possible [13]. The arbitrary scaling of the quan-
tized signal is chosen such that (2) has unit power. For convenience,
we denote qm[n] , q

(
ym[n]

)
and q[n] , (q1[n], . . . , qM [n])T.

Both single-carrier and OFDM transmission are studied. The
transmission is observed for a block of N symbols. During sym-
bol periods n = 0, . . . , N−1, we assume that the users transmit

x[n] =

{
s[n], if single-carrier
1√
N

∑N−1
ν=0 s[ν]ej2πnν/N , if OFDM

, (3)

where s[n] = (s1[n], . . . , sK [n])T is the vector of data symbols
that are concurrently transmitted during symbol duration n by the K
users. We assume that E[ sk[n] ] = 0 and E

[
|sk[n]|2

]
= 1 for all

k, n. The users also transmit an L−1-symbol long cyclic prefix:

x[n] = x[N + n], −L < n < 0. (4)

The signal power is normalized such that E
[
|xk[n]|2

]
= 1, ∀n, k.

3. RECEIVER COMBINING

The base station combines the received signals in a FIR filter to esti-
mate the transmitted signals, just as it would have if the quantization
were perfect. The resulting estimate is

x̂[n] ,
(
x̂1[n], . . . , x̂K [n]

)T
=

1

M

`max∑
`=`min

W[`]q[n− `], (5)

where `min and `max are the smallest and largest indices of the non-
zero taps of the impulse response of the combiner {W[`]∈CK×M}:

W[`] ,
1

N

N−1∑
n=0

W̃[n]ej2πn`/N , ` = `min, . . . , `max, (6)

where the frequency domain combining matrices W̃[n] can be de-
fined in a number of different ways. Three common linear com-
biners are the Maximum-Ratio, Zero-Forcing, and Minimum Mean-
Square-Error Combiners (MRC, ZFC, MMSEC):

W̃[n] =


H̃

H
[n], if MRC

(H̃
H
[n]H̃[n])−1H̃

H
[n], if ZFC

(H̃
H
[n]H̃[n] + ρIK)−1H̃

H
[n], if MMSEC

, (7)

where ρ in the definition of MMSEC is a system parameter that can
be used to make the combiner more like MRC (large ρ) or more like
ZFC (small ρ). The definitions are in terms of the channel spectrum:

H̃[n] ,
L−1∑
`=0

H[`]e−j2πn`/N . (8)

The element at position (k,m) of W[`] is denoted by wkm[`]. The
symbol estimates are obtained directly as

ŝ[n] =

{
x̂[n], if single-carrier
1√
N

∑N−1
ν=0 x̂[ν]e−j2πνn/N , if OFDM

. (9)

In the comparison of single-carrier and OFDM transmission, we
assume that the channel is perfectly known to the base station. In

reality, perfect channel state knowledge is not realistic in massive
MIMO, because of the huge dimension of the channel, and more so
when one-bit ADCs are used, due to the coarse quantization of the
received signals. We reason that any estimation of the channel will
affect a single-carrier system the same way it will affect an OFDM
system. Therefore, if the performance of the two systems is the same
with perfect channel state information, it should also be the same
with imperfect channel state information. Previous work [14,15] has
shown that channel state information can be acquired in a massive
MIMO system even with one-bit ADCs.

4. QUANTIZATION NOISE

By showing that the estimates of the linear combiners in (7) are con-
sistent also with one-bit ADCs, we will show that the orthogonality
of the transmit symbols are preserved and that OFDM easily can be
implemented in massive MIMO when the number of taps is large.

4.1. Consistency of Linear Combiners

The following theorem states that, in the limit of infinite number of
antennas, the estimates of linear combiners converge to a value from
which the transmit signal can be recovered, i.e., that linear combiners
are consistent.

Theorem 1. In a Rayleigh fading channel with uniform delay pro-
file, hmk[`] ∼ CN (0, 1

L
) IID for all m, k and `, the linear combiners

in (7) are consistent, i.e., given the transmit signals {xk[n]}, there
exists a deterministic invertible function g : C → C such that

x̂k[n]
a.s.−→ g(xk[n]), M → ∞. (10)

Proof. We note that all combiners in (7) converge to the MRC as the
number of antennas tends to infinity for an IID Rayleigh fading chan-
nel because the propagation is favorable [16]. We therefore consider
the MRC estimate of the k-th user:

x̂k[n] =
1

M

M∑
m=1

L−1∑
`=0

h∗
mk[`]qm[n+ `]. (11)

Since the terms in the sum are IID, by the law of large numbers,

lim
M→∞

x̂k[n] =

L−1∑
`=0

E
[
h∗
mk[`]qm[n+ `]

]
(12)

=

L−1∑
`=0

E
[
h∗
mk[`]E

[
q
(√

Pkhmk[`]xk[n]+uk[n, `]
) ∣∣ hmk[`]

]]
,

(13)

where

uk[n, `] ,
K∑

k′=1

L−1∑
`′=0

(k′,`′)6=(k,`)

√
Pk′hmk′ [`′]xk′ [n+`−`′] + zm[n+`′].

(14)

We note that uk[n, `] ∼ CN (0, Ik[n, `]), where

Ik[n, `] ,
1

L

K∑
k′=1

L−1∑
`′=0

(k′,`′)6=(k,`)

Pk′
∣∣xk′ [n+ `− `′]

∣∣2 +N0. (15)

It is noted that, for any given complex numbers h and x and
stochastic variable u ∼ CN (0, σ2), it is true that

√
2Re

(
E
[
q
(
hx+ u

) ∣∣ h])
= Pr(Rehx > −Reu | h)− Pr(Rehx < −Reu | h) (16)
= 1− 2Pr(Rehx < −Reu | h) (17)

= 1− 2Q

(√
2Rehx

σ

)
. (18)
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The imaginary part can be rewritten in the same way.
We now let hRe , Rehmk[n] and hIm , Imhmk[n] be the IID

real and imaginary parts of the channel coefficient, hRe ∼ hIm ∼
N (0, 1

2L
). To simplify the mathematical notation, we initially as-

sume that xk[n] is real in the following steps—the complex inter-
fering transmit signals xk′ [n′], (k′, n′) 6= (k, n) are still arbitrary.

Then the variable a , xk[n]
√

2Pk
Ik[n,`]

is real and the expected value
in (13) is given by

1√
2
E
[(
hRe − jhIm

)(
1− 2Q(ahRe) + j − j2Q(ahIm)

)]
(19)

= −
√
2E
[
hRe Q(ahRe) + hIm Q(ahIm)

+ j
(
hRe Q(ahIm)− hIm Q(ahRe)

)]
(20)

= −2
√
2E
[
hRe Q(ahRe)

]
. (21)

In the first step, we used (18) and its imaginary counterpart. In the
last step, the two terms of the imaginary part of the expectation are
zero, because the real and imaginary parts hRe and hIm are indepen-
dent and zero mean, and the two terms of the real part are the same,
because they are identically distributed.

If we let fh(h) be the probability density function of a N (0, 1
2L

)
distributed random variable, then (13) becomes

lim
M→∞

x̂k[n] = −2
√
2

L−1∑
`=0

∞∫
−∞

fh(h)hQ

(
xk[n]

√
2Pk

Ik[n, `]
h

)
dh

(22)

, g′(xk[n]). (23)

The steps in (19)–(21) can be repeated for xk[n] with arbitrary mod-
ulus. It can then be seen that, for a general transmit signal xk[n],

lim
M→∞

x̂k[n] =
xk[n]

|xk[n]|
g′
(
|xk[n]|

)
, g
(
xk[n]

)
. (24)

Because of this relation between the functions g and g′, it is enough
to prove that g′ : R → R is monotonic to prove that g also is invert-
ible. We consider the derivative of g′:

d

dx
g′(x) =

L−1∑
`=0

2
√
2Pk√

πIk[n, `]

∞∫
−∞

fh(h)h
2e

−Pkx2h2

Ik[n,`] dh (25)

> 0, ∀x. (26)

Here we used the fact that d
dx

Q(x) = − 1√
2π

e−
x2

2 . Since g′ is
monotonically increasing, it is invertible. Because of (24), g is in-
vertible too.

Theorem 1 tells us that if Ik[n, `] is known, then xk[n] can be de-
tected error-free as M → ∞. Since knowing Ik[n, `] requires some
knowledge of the interfering symbols {xk′ [n′]}, (k′, n′) 6= (k, n),
determining it perfectly is only possible in a single-user frequency-
flat channel, where Ik[n, `] = N0. In a wideband system, however,
the function g does not depend on Ik[n, `], only its mean, and good
detection can be achieved without knowledge of the interfering sym-
bols. This is formalized in the following theorem.

Theorem 2. In a wideband system, the function g approaches the
deterministic linear function

g(xk[n])
a.s.−→
√

2

π
xk[n]

√
Pk

N0 +
∑K

k′=1 Pk′
, L → ∞. (27)
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Fig. 2. The MRC estimates (blue) and the 16-QAM transmit signals
(red) with M antennas, K users, L channel taps. The power Pk = 1,
∀k, and the channel is IID Rayleigh fading hmk[`] ∼ CN (0, 1

L
).

The channel is known at the base station.

Proof. First, we note that the interference becomes deterministic:

Ik[n, `]
a.s.−→ N0 +

K∑
k′=1

Pk′ , L → ∞. (28)

By evaluating the integral in (25), it is seen that the derivative con-
verges pointwise:

d

dx
g′(x) =

√
2

π

L−1∑
`=0

√
Pk

Ik[n, `]

√
L(

L+ Pkx
2

Ik[n,`]

)3/2 (29)

a.s.−→
√

2Pk

π
(
N0 +

∑K
k′=1 Pk′

) , L → ∞. (30)

The sum in (29) is dominated by the constant function
√

Pk
Imin

, where

Imin , min{Ik[n, `], L = 1, . . .}, for any realization {xk[n]}, i.e.,

L−1∑
`=0

√
Pk

Ik[n, `]

√
L(

L+ Pkx
2

Ik[n,`]

)3/2 ≤
√

Pk

Imin
, ∀L. (31)

Because the dominating function is integrable over any finite inter-
val [0, x], the limit of g′(x) can be obtained by integration of the
limit of its derivative (30) according to the theorem of dominated
convergence. Because g′(0) = 0, this completes the proof.

The consistency and the behavior of the function g can be seen
in the examples given in Figure 2. In the upper left system, no am-
plitude information can be recovered, even if the number of antennas
is large, because the variance Ik[n, `] = 0. In this case, dithering the
received signal prior to quantization helps in recovering the ampli-
tude, see the upper right system, where noise has been added. The
function g is nonlinear but amplitude information is still recoverable
with enough antennas at the base station. In the lower left system,
the variance Ik[n, `] assumes three distinct values depending on the
power of the transmit signal of the second user, which results in three
possible points for each symbol estimate. In the lower right wide-
band system however, the function g is deterministic and linear.
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Fig. 3. Symbol estimates ŝk[n] after one-bit quantization and ZFC in
a massive MIMO base station with 128 antennas that serves K users
over an L-tap Rayleigh fading channel, Pk = 1,∀k, and N0 = 0.

4.2. Distribution of Error Due to Quantization

The error after quantization is given by:

ek[n] , x̂k[n]− E
[
g(xk[n])

∣∣ xk[n]
]
= dk[n] + rk[n], (32)

where

dk[n] ,
1

M

M∑
m=1

L′−1∑
`=0

wkm[`]qk[n− `]− g(xk[n]) (33)

rk[n] , g(xk[n])− E
[
g(xk[n])

∣∣ xk[n]
]
. (34)

The first term becomes circularly symmetric Gaussian when the
number of antennas grows large according to the central limit the-
orem. The second term is a term that is proportional to the transmit
signal xk[n]. The error, thus, consists of two parts: one circularly
symmetric Gaussian dk[n] and one radial distortion rk[n].

In a narrowband system, where the term Ik[n, `] can vary sig-
nificantly, the radial distortion is prominent. In a wideband system
however, the radial distortion is negligible because of Theorem 2.
When only the circularly symmetric error is present, the error due to
quantization has the same distribution in the time and frequency do-
main and there is no difference in the performance between single-
carrier and OFDM transmission. The radial distortion, however, is
easier to equalize if the symbols are in the time domain than if they
are in the frequency domain. This can be seen in Figure 3. In the
wideband system, we see that single-carrier and OFDM perform the
same: the variance and distribution of the quantization noise is the
same. In the narrowband system, the radial error due to quantization
is not negligible, because the interference power Ik[n, `] varies be-
tween estimates. It can be seen that the symbols of the single-carrier
system is easier to distinguish than those of the OFDM system. We
also see that the error variance due to quantization can be smaller
in a wideband system than in a narrowband system with the same
amount of antennas at the base station, at least if OFDM is used.

5. NUMERICAL EXAMPLES

To verify the feasibility of OFDM, we have done a numerical study
of a massive MIMO system that uses linear receive combining. The
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Fig. 4. The rate in a system with M antennas that serves K users
over an L-tap Rayleigh fading channel. The power is Pk/N0 =
10 dB,∀k. The curves for single-carrier and OFDM transmission co-
incide. The dashed curve shows the performance of the same system
with perfect quantization (the rate of unquantized ZFC is mostly out-
side the drawn range).

channel has been modeled as IID Rayleigh with a constant power
delay profile, i.e., hmk[`] ∼ CN (0, 1/L). The symbol estimate can
be divided into

ŝk[n] = ask[n] + z′k[n], (35)

where the choice a = E[ s∗k[n]ŝk[n] ] minimizes the variance of the
noise term z′k[n] [17]. Then we can define a Signal-to-Interference-
Quantization-and-Noise Ratio as

SIQNR ,
|a|2

E[ |z′k[n]|2 ]
. (36)

Because E[ s∗k[n]z
′
k[n] ] = 0, we can achieve the following rate by

treating all uncorrelated noise z′k[n] as Gaussian [18]

R , log2(1 + SIQNR) [bpcu]. (37)

This rate was computed for different numbers of antennas and
different numbers of channel taps in Figure 4. It can be seen that the
rate increases as the number of antennas increases and that one-bit
ADCs with linear combining becomes feasible in the massive MIMO
regime. Furthermore, we see that the rate also increases with the
number of channel taps. The improvement saturates when Ik[n, `]
becomes deterministic. With a large K, this happens sooner, com-
pare the improvement when K = 5 and K = 30 as L grows in
Figure 4. This suggests that one-bit ADCs perform the same or bet-
ter in frequency-selective channels compared to frequency-flat chan-
nels, and that wideband systems even can improve the performance
of one-bit ADCs.

6. CONCLUSION

In wideband massive MIMO systems, one-bit ADCs affect the per-
formance of single-carrier and OFDM transmission in the same way,
which means that many results for single-carrier systems carry over
also to OFDM systems. The frequency selectivity of the wideband
channel helps to spread the effect of the quantization, so that all
symbols are affected in the same way. We proved that this makes
the estimates of linear combiners consistent and the noise circularly
symmetric Gaussian, which makes OFDM easy to implement. Fur-
ther, we note that the quantization noise has two parts: one radial and
one additive circularly symmetric Gaussian. Only the latter is signif-
icant in a wideband system, where we have shown that the frequency
selectivity of the channel makes radial distortion negligible.
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