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Abstract—Large-scale antenna (LSA) has gained a lot of atten-
tion recently since it can significantly improve the performance
of wireless systems. Similar to multiple-input multiple-output
(MIMO) orthogonal frequency division multiplexing (OFDM) or
MIMO-OFDM, LSA can be also combined with OFDM to
deal with frequency selectivity in wireless channels. However,
such combination suffers from substantially increased complexity
proportional to the number of antennas in LSA systems. In this
paper, we propose a low-complexity recursive convolutional pre-
coding to address the issues above. The traditional ZF precoding
is implemented through the recursive convolutional precoding
in the time domain so that only one IFFT is required for each
user and the matrix inversion can be also avoided. Simulation
results show that the proposed approach can achieve the same
performance as that of ZF but with much lower complexity.

Index Terms—Large-scale antenna, massive MIMO, precoding,
OFDM.

I. INTRODUCTION

By installing hundreds of antennas at the base station (BS),
large-scale antenna (LSA) systems can significantly improve
performance of cellular networks [1], [2]. Even if LSA can
be regarded as an extension of the traditional multiple-input
multiple-output (MIMO) systems, which has been widely
studied during the last couple of decades [3], many special
properties of LSA due to extremely large number of antennas
make it a potential technique for future wireless systems and
thus has gained lots of attention recently. Similar to the phi-
losophy of MIMO-orthogonal frequency division multiplexing
(OFDM) [4] or MIMO-OFDM [5], LSA can be also combined
with OFDM to deal with frequency selectivity in wireless
channels. Although straightforward, such combination suffers
from substantially increased complexity.

First, the precoding is conducted in the frequency domain
for traditional MIMO-OFDM [6]. In this case, each antenna
at the BS requires an inverse fast Fourier transform (IFFT)
for OFDM modulation and the number of IFFTs is equal
to the antenna number. Therefore, the number of IFFTs will
increase substantially as the rising of the antenna number in
LSA systems, leading to a huge computational burden.

Second, zero-forcing (ZF) precoding is required to support
more users in LSA systems. As indicated in [1], [2], the
MF precoding can perform as well as the ZF precoding in
LSA systems because the inter-user-interference (IUI) can
be suppressed asymptotically through the MF precoding if

the antenna number is large enough and the channels at
different antennas and different users are independent. In
practical systems, however, the antenna number is always
finite. Moreover, the channels at different antennas will be
correlated when placing so many antennas in a small area. In
this sense, there will be residual IUI for the MF precoding,
and the ZF precoding is thus still required [7]. As a result,
the matrix inversion of the ZF precoding will substantially
increase the complexity, especially when the user number is
large.

To address the issues above, we propose a low-complexity
recursive convolutional precoding for LSA-OFDM in this
paper.

First, a convolutional precoding filter in the time domain
is used to replace the traditional precoding in the frequency
domain. In this way, only one IFFT is required for each
user no matter how many antennas there are. Meanwhile, by
exploiting the frequency-domain correlation of the traditional
precoding coefficients, the length of the precoding filter can be
much smaller than the FFT size. As a result, the complexity
can be greatly reduced, especially when the antenna number
is large. Even though the convolutional precoding has been
reported in [8] for traditional MIMO-OFDM systems, the
advantage of convolutional precoding can be hardly recognized
in traditional systems because the antenna number there is
small. In this paper, we highlight that such advantage becomes
remarkable when the antenna number is large and thus it is
more suitable to adopt the convolutional precoding rather than
the traditional frequency-domain precoding for the transceiver
design in LSA-OFDM systems.

Second, based on the order recursion of Taylor expansion,
the convolutional precoding filter works recursively in this
paper such that we can not only avoid direct matrix inverse of
traditional ZF precoding but also provide a way to implement
the traditional ZF precoding through the convolutional precod-
ing filter with low complexity. Taylor expansion has already
been used for Truncated polynomial expansion (TPE) in [9]–
[12]. In [9], it is used to approximate the matrix inverse in
ZF precoding. The precoding can be conducted iteratively so
that the matrix inverse can be avoided. A similar approach is
adopted in [10] where the TPE is based on Cayley-Hamilton
theorem and Taylor expansion is used for optimization of
polynomial coefficients. Different from the existing works
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that are based on a matrix form Taylor expansion in the
frequency domain, the recursive ZF precoding in this paper
is implemented through the recursive filter in the time domain
such that it can be naturally combined with the convolutional
precoding.

The rest of this paper is organized as follows. The system
model is introduced in Section II. The proposed approach is
derived in Section III. Simulation results are presented Section
IV. Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL

Consider downlink transmission in an LSA-OFDM system
where a BS employs M antennas to serve P users, each with
one antenna, simultaneously at the same frequency band. As
in [1], we assume M ≫ P .

Denote xp[n, k] with E(|xp[n, k]|2) = Es to be the transmit
symbol for the p-th user at the k-th subcarrier of the n-th
OFDM block. In an LSA-OFDM based on traditional OFDM
implementation, the precoding is carried out in the frequency
domain, and therefore the transmit signal at the l-th sample of
the n-th OFDM block at the m-th antenna for the p-th user is

sm,p[n, l] =
1√
K

K−1∑
k=0

um,p[n, k]xp[n, k]e
j 2πkl

K , (1)

where K denotes the subcarrier number for the OFDM modu-
lation and um,p[n, k] denotes the precoding coefficient for the
k-th subcarrier of the n-th OFDM block at the m-th antenna
for the p-th user. A cyclic prefix (CP) will be added in front
of the transmit signal to deal with the delay spread of wireless
channels.

After removing the CP and OFDM demodulation, the re-
ceived signal at the p-th user can be expressed as

yp[n, k] =
M∑

m=1

hp,m[n, k]

(
P∑

p=1

um,p[n, k]xp[n, k]

)
+ zp[n, k],

(2)

where zp[n, k] is the additive white noise with E(|zp[n, k]|2) =
N0, and hp,m[n, k] is the channel frequency response (CFR)
corresponding to the k-th subcarrier of the n-th block at the
m-th antenna for the p-th user, which can be expressed as

hp,m[n, k] =
L−1∑
l=0

cp,m[n, l]e−j 2πlk
K , (3)

where cp,m[n, l] is the channel impulse response (CIR) and L
denotes the channel length which is usually much smaller than
the FFT size. The CFR is assumed to be complex Gaussian
distributed with zero mean and E{hp,m[n, k]h∗

p1,m1
[n, k]} =

gpδ[m − m1]δ[p − p1], where gp denotes the square of the
large-scale fading coefficient for the p-th user and δ[·] denotes
the Kronecker delta function. It means the CFRs have been
assumed to be independent for different users an different
antennas.

The received signal in (2) can be rewritten in a vector form

as

y[n, k] , (y1[n, k], · · · , yP [n, k])T

= H[n, k]U[n, k]x[n, k] + z[n, k], (4)

where

x[n, k] = (x1[n, k], · · · , xP [n, k])
T,

z[n, k] = (z1[n, k], · · · , zP [n, k])T,
U[n, k] = {um,p[n, k]}M,P

m,p=1 = (u1[n, k], · · · ,uP [n, k]),

H[n, k] = {hp,m[n, k]}P,M
p,m=1 = (h1[n, k], · · · ,hP [n, k])

T
,

with up[n, k] = (u1,p[n, k], · · · , uM,p[n, k])
T being the cor-

responding precoding vector of the p-th user and hp[n, k] =

(hp,1[n, k], · · · , hp,M [n, k])
T being the CFR vector for the p-

th user.

III. LOW-COMPLEXITY RECURSIVE CONVOLUTIONAL
PRECODING

A. Recursive Updating

The ZF precoding is considered in this paper, then the
desired precoding matrix can be expressed as

Uo[n, k] = HH[n, k]
(
H[n, k]HH[n, k]

)−1
. (5)

With the help of Taylor expansion, the matrix inverse in (5)
can be substituted by an order-recursive relation as

U(Q+1)[n, k] = U(Q)[n, k]+
µ

M
HH[n, k]G−1(I−H[n, k]U(Q)[n, k]), (6)

where G = diag{gp}Pp=1 and U(Q)[n, k] denotes the corre-
sponding precoding matrix with the Q-th order expansion and
µ is a step size that affects the convergence, as we will discuss
in Section IV. The order-recursive relation in (6) can be also
rewritten in a vector form as

u(Q+1)
p [n, k] = u(Q)

p [n, k]+ (7)

µ

M

P∑
i=1

g−1
i h∗

i [n, k](δ[i− p]− hT
i [n, k]u

(Q)
p [n, k]).

In (7), the order-recursive updating is driven by the ex-
pansion order, Q. Mathematically, the expansion order in (7)
can be viewed as a recursion counter, which increases as the
recursion proceeds. In this sense, the OFDM block index can
be also used as that recursion counter. In other words, (7)
can be also driven by the OFDM block index if replacing
expansion order, Q, with OFDM block index, n, that is

up[n+ 1, k] = up[n, k]+ (8)

µ

M

P∑
i=1

g−1
i h∗

i [n, k](δ[i− p]− hT
i [n, k]up[n, k]).

As a result, the order recursion in (7) is converted to the time
recursion in (8). Essentially, the order recursion in (7) can
be converted to the time recursion in (8) is just because they
have a similar expression except that one is driven by Q and
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Fig. 1. (a) Convolutional precoding with (b) recursive coefficient updating
and (c) estimation error calculation.

the other is driven by n. Using the time recursion in (8), the
actual calculation can be conducted in the time domain even
though the principle for avoiding the matrix inverse is based
on the order recursion in (7). In this way, we can not only
reduce the complexity since there is not need to repeat the
order recursions from the zeroth order for each OFDM block,
but also track the time-varying channels as long as the channel
changes slowly.

B. Convolutional Precoding

Although the matrix inverse is avoided through (8), the
precoding is still conducted in the frequency domain. In
this subsection, we will convert it into the time-domain
convolutional precoding by exploiting the frequency-domain

correlation of the precoding matrices. Denote um,p[n] =
(um,p[n, 0], · · · , um,p[n,K−1])T, which contains the precod-
ing coefficients from all subcarriers of the n-th OFDM block
at the m-th antenna for the p-th user. Then, (8) can be rewritten
as

um,p[n+ 1] = um,p[n]+

µ

M

P∑
i=1

g−1
i (δ[i− p]I−Di,p[n])h

∗
i,m[n], (9)

where hp,m[n] = (hp,m[n, 0], · · · , hp,m[n,K − 1])T is the
corresponding CFR vector from the m-th antenna to the p-th
user, and Di,p[n] is a K×K diagonal matrix with the (k, k)-th
element given by

{Di,p[n]}(k,k) =
M∑

m=1

hi,m[n, k]um,p[n, k]. (10)

Denote wm,p[n, l] to be the coefficient for the l-th tap of
the precoding filter at the m-th antenna for the p-th user
corresponding to the n-th OFDM block. Then, we have

wm,p[n] , (wm,p[n, 0], · · · , wm,p[n,K − 1])T

=
1

K
FHum,p[n], (11)

where wm,p[n] is the corresponding precoding vector, and F is
the discrete Fourier transform (DFT) matrix with the (m,n)-th
element given by

{F}(m,n) = e−j 2πmn
K , m, n ∈ [0,K − 1]. (12)

By taking the inverse DFT of (9), we can obtain the coeffi-
cients for the time-domain convolutional precoding filter as

wm,p[n+ 1, l] = wm,p[n, l]+

µ

M

P∑
i=1

g−1
i c∗i,m[n,−l] ∗ ei,p[n, l], (13)

where ei,p[n, l] is the estimation error given by

ei,p[n, l] = δ[i− p]δ[l]−
M∑

m=1

ci,m[n, l] ∗ wm,p[n, l]. (14)

The resulted recursive convolutional precoding is shown in
Fig. 1. The precoding is carried out in the time domain via
the precoding filter. In this case, only one IFFT is required
for each user no matter how many antennas there are at the
BS. Therefore, the number of IFFTs is equal to the number of
users, which is much smaller than the antenna number in LSA
systems. By exploiting the correlation of frequency-domain
precoding coefficients, the coefficients of the precoding filter
is sparse and thus can be truncated. For the single user case,
the precoding filter is exactly the conjugate of the CIR and
thus the length of the precoding filter will be 0 ≤ l ≤ L− 1.
In the case of multiple users, we use one more tap, as a rule
of thumb, for the positive taps and another L taps to include
the significant coefficients on the negative taps. As a result,
wm,p[n, l] can be truncated within the range −L ≤ l ≤ L
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Fig. 2. An example for the complexity comparison.

(modulo K).

C. Complexity

As a comparison of complexity, fig. 2 presents the complex
multiplications (CMs) required by the proposed approach,
the traditional ZF precoding, and the TPE precoding for the
typical 5 MHz bandwidth in LTE where the size of FFT is
K = 512 [14]. For the traditional ZF precoding, B consecutive
subcarriers (B = 12 in long-term evolution (LTE)) can share
the same precoding coefficients by exploiting the frequency-
domain correlation of the precoding coefficients. For the TPE
precoding, it requires Q− 1 iterations for each OFDM block
because the iterations are repeated from the zeroth order for
each OFDM block. As expected, the complexity of the con-
volutional precoding is substantially reduced compared with
existing approaches when the antenna number is large. When
antenna number is small, however, the complexity reduction is
not so significant as that for the case of large antenna number.
The traditional ZF or TPE may even require fewer CMs than
the proposed approach with larger B or smaller Q, at the
cost of performance degradation, as will be shown in Section
V. In fact, the advantage of the convolutional precoding can
be hardly observed in traditional systems since the antenna
number there is small, and it only becomes remarkable when
the antenna number is very large. Therefore, it is more suitable
to adopt the convolutional precoding rather than the traditional
frequency-domain precoding for the transceiver design in
LSA-OFDM systems.

IV. SIMULATION RESULTS

In this section, we evaluate the proposed approach using
computer simulation. We consider a BS equipped with M =
100 antennas and P = 10 users in the system. A quadrature-
phase-shift-keying (QPSK) modulated OFDM signal is used,
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R

 

 

ZF, B = 1
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Prop. 30 Hz
Prop. 90 Hz
Prop. 150 Hz

Fig. 3. SER versus Es/N0.

where the subcarrier spacing is 15 KHz corresponding to an
OFDM symbol duration about 66.7µs. For a typical 5 MHz
channel, the size of FFT is 512 with 300 subcarriers used
for data transmission and the others used as guard band as
in LTE [14]. Each frame consists of 14 OFDM symbols. A
normalized ETU channel model is used, which has 9 taps and
the maximum delay τmax = 5µs. Without loss of generality,
we assume gp = 1 for all users.

Fig. 3 shows the SER versus Es/N0 with different Doppler
frequencies. For the proposed approach, we also assume the
expansion order is large enough for initialization such that
U[0, k] = Uo[0, k]. As the increasing of the Doppler fre-
quencies, the SER performances degrade because the channels
cannot be efficiently tracked when the Doppler frequency is
large. As comparisons, the MF precoding and the traditional
ZF precodings with B = 1, 6, 12 are also included. Since
the ZF and MF precodings are conducted for each OFDM
block individually, the SER performances will be the same for
different Doppler frequencies. When the Doppler frequency is
small, the proposed approach can achieve the same SER as
the traditional ZF precoding with B = 1. As the increasing of
B, the performance of ZF precoding will degrade although the
complexity can be reduced. Meanwhile, the proposed approach
can significantly outperform the MF precoding since the latter
cannot completely remove the IUI.

V. CONCLUSIONS

In this paper, low-complexity convolutional precoding has
been proposed for the precoder design in an LSA-OFDM
system. Our results have shown that it is more suitable to
adopt the convolutional precoding rather than the traditional
frequency-domain precoding for the transceiver design in
LSA-OFDM systems.
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