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ABSTRACT
In this paper, we address the problem of spectral unmixing
in urban hyperspectral images using a Maximum A Posteriori
(MAP)-based Non-negative Matrix Factorization (NMF) ap-
proach. Considering a Linear-Quadratic (LQ) mixing model,
we seek to decompose the spectrum observed in each pixel
of the image into a set of pure material spectra, as well as
their abundance fractions and the mixing coefficients associ-
ated with products of these pure material spectra. The main
idea of the proposed method is to take into account the avail-
able prior information about the unknown parameters for a
better estimation of them. To this end, we first derive a MAP-
based cost function, then minimize it using a projected gradi-
ent algorithm by modifying a recently proposed NMF method
adapted to LQ mixtures. Simulation results confirm the rele-
vance of our approach.

Index Terms— Unsupervised spectral unmixing, Linear-
Quadratic mixture, Non-negative Matrix Factorization, Max-
imum A Posteriori estimation, Hyperspectral image

1. INTRODUCTION

In the recent years, the growing use of hyperspectral imaging
instruments has drawn the signal and image processing com-
munity’s attention to the crucial importance of hyperspectral
unmixing. Because of the limited spatial resolution of hy-
perspectral images, the spectrum observed at each pixel of
these images is often a mixture of the spectra of pure materi-
als (endmembers) present in that pixel. Most existing spectral
unmixing methods assume that the mixing model is linear, i.e.
the observed pixel spectra result from linear combinations of
endmembers (see [1] and [2] for a review). Nevertheless, in
areas of variable topographic relief, the mixture model is most
likely to be nonlinear due to the 3D structures that induce mul-
tiple scattering of light between various surfaces [3].
Recently, physical studies presented in [4] showed the rele-
vance of the Linear-Quadratic (LQ) mixture model to describe
this mixing phenomenon in urban environments. Thus, con-
sidering an urban hyperspectral image acquired in N spectral

bands and composed of K pixels, it has been shown that the
reflectance spectrum observed in a pixel i of such an image
may be approximated as an LQ mixture of reflectance spectra
of L pure materials (sources) present in the observed scene,
as stated in the following equation:

xi =

L∑
j=1

aj(i)sj +

L∑
j=1

L∑
k=j

aj,k(i)sj � sk + ni, (1)

where xi = [xi1 , ..., xiN ]T is the spectrum associated with the
observed pixel i, sj = [sj1 , ..., sjN ]T is the spectrum of the
pure material j, aj (i) is the abundance fraction of the pure
material j in the pixel i, aj,k(i) is the quadratic mixing coef-
ficient associated with the pure materials j and k in the pixel i,
the symbol � represents the term by term Hadamard product,
and ni is an additive noise, assumed to be Gaussian, zero-
mean, independent and identically distributed (i.i.d.) and of
variance σ2

n. The numerical studies carried out in [4] showed
that the following physical constraints are met:

sjl ≥0
aj(i) ≥0
L∑
j=

aj(i) = 1

aj,k(i) ∈[0, 0.5]

∀


1 ≤ i ≤ K
1 ≤ j ≤ L
j ≤ k ≤ L
1 ≤ l ≤ N

(2)

Only a few hyperspectral unmixing methods adapted to LQ
mixtures in the field of remote sensing have been proposed
in the literature (see [3] and [5] for a review). One of these
methods, which we proposed in [6], is based on the non-
negativity of data involved in the mixing process, and pro-
poses an extension of Non-negative Matrix Factorization
(NMF) [7, 8] adapted to the LQ model. Like the original
linear NMF, this extension to the LQ model suffers from the
well-known non-uniqueness of the solution and the possible
convergence of the algorithms towards spurious minima. To
constrain the optimization problem, and so, to increase the
chance of finding the right solution, the available prior in-
formation about sources or mixing parameters may be used.
In this paper, considering an LQ mixing model, we modify
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the above-mentioned LQ-NMF method so as to take into
account this prior information, and we propose an iterative
projected gradient algorithm to estimate the parameters of the
prior distributions together with the spectra and the mixing
parameters.

2. NMF APPROACH FOR LQ MIXTURES

By gathering spectra observed in all the pixels, Eq. (1) can be
rewritten in the following matrix form

X = AS + N, (3)

where X = [x1 · · · xK ]T , S is a matrix containing the pseudo-
sources, i.e. the actual sources and their products: S =
[s1 · · · sL s1 � s1 s1 � s2 · · · sL � sL]T , N = [n1 · · · nK ]T ,
and A is a matrix containing the abundance fractions and
quadratic coefficients:

A =

 a1(1) · · · aL(1) a1,1(1) a1,2(1) · · · aL,L(1)
...

...
a1(K) · · · aL(K) a1,1(K) a1,2(K) · · · aL,L(K)

.

According to Eq. (2), matrices A and S in (3) are non-
negative, which suggests the use of NMF-based methods to
unmix data. In [6], supposing the lack of any additional useful
information about the sources and the mixing parameters, we
proposed a gradient-based LQ-NMF algorithm to minimize
the Frobenius (squared) norm ||X−AS||2F subject to A ≥ 0
and S ≥ 0, while taking into account the particular structure
of S, i.e. the fact that the last rows of S are the Hadamard
products of its first rows. This structure was exploited for
calculating the derivatives of the Frobenius norm with respect
to the actual sources (see [6] for detailed calculations). In
the following, we show how available prior information may
be used to improve this method by deriving a Maximum A
Posteriori (MAP) estimator.

3. PROPOSED METHOD

3.1. MAP estimation

The MAP estimator for the unknown matrices A and S reads

{Â, Ŝ} = argmax
A,S

f(A,S|X)

= argmax
A,S

f(X|A,S)f(A)f(S),
(4)

where f stands for Probability Density Function (PDF).
Since no prior information about the spectra (except their
non-negativity) is available, a non-informative uniform (i.e.
constant) prior distribution can be assigned to them, so that

{Â, Ŝ} = argmax
A,S

f(X|A,S)f(A)

= argmax
A,S

[logf(X|A,S) + logf(A)] .
(5)

The noise components in (3) being spectrally and spatially
i.i.d., Gaussian, zero-mean and of variance σ2

n, the likelihood
f(X|A,S) in (5) and its logarithm respectively read

f(X|A,S) =

K∏
i=1

N∏
l=1

1√
2πσ2

n

exp

(
−(X −AS)2il

2σ2
n

)
, (6)

logf(X|A,S) = C − 1

2σ2
n

||X−AS||2F , (7)

where (X−AS)il = xil−
L∑
j=1

aj(i)sjl−
L∑
j=1

L∑
k=j

aj,k(i)sjlskl,

and C is a constant.

3.2. Prior information about mixing parameters

According to the sum-to-one constraint mentioned in (2), the
abundance fractions in each pixel are dependent. Assuming
that the quadratic coefficients are independent from the abun-
dance fractions and from each other, and that the mixing pa-
rameters related to a pixel are independent from those related
to another pixel, we can write

f(A) =

K∏
i=1

f(a1(i), · · · , aL(i))

L∏
j=1

L∏
k=j

f(aj,k(i))

 . (8)

The abundance fractions in each pixel are non-negative and
sum to one. Thus, they may be modeled using Dirichlet dis-
tributions which satisfy the above properties [9, 10]:

f(a1(i), · · · , aL(i)) =

Γ(
L∑
j=1

θj)

L∏
j=1

Γ(θj)

L∏
j=1

aj(i)
θj−1, (9)

where Γ is the Gamma function and θj are the Dirichlet pa-
rameters.
Numerical studies in an urban environment carried out in [4]
showed that the quadratic coefficients may be modeled by a
decreasing PDF: in many pixels the quadratic terms of mix-
tures are negligible and take small values while they take their
highest values (0.4-0.5) only in a few pixels. Thus, we de-
cided to assign a half-normal distribution to the quadratic co-
efficients as follows:

f(aj,k(i)) =
2ϑj,k
π

exp

(
−(aj,k(i))2ϑ2j,k

π

)
,∀aj,k(i) ≥ 0

(10)

where ϑj,k =

√
π

σj,k
√

2
is the parameter of this PDF.

3.3. Cost function

By inserting (9) and (10) in (8), then computing its logarithm
and using (5) and (7), it can easily be shown that the MAP
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estimator for A and S may be obtained by minimizing the
following cost function:

J =
1

2
||X−AS||2F − ηR (11)

where R is a regularization term related to prior information
and defined by

R = KlogΓ(

L∑
j=1

θj)−K
L∑
j=1

logΓ(θj)

+

L∑
j=1

[
(θj − 1)

K∑
i=1

log aj(i)

]

+

L∑
j=1

L∑
k=j

[
Klogϑj,k −

ϑ2j,k
π

K∑
i=1

(aj,k(i))2

]
, (12)

and η is the regularization parameter whose value depends on
the noise variance σ2

n. In practice, since σ2
n is unknown, the

value of η is selected manually.

3.4. Optimization Algorithm

The cost function J , defined in (11), should be minimized us-
ing an optimization algorithm. If the prior parameters θj and
ϑj,k are known, we can easily adapt the LQ-NMF projected
gradient method described in [6] to this cost function just
by taking into account the regularization term R, defined by
(12), when computing the gradient with respect to the entries
of the mixing matrix A, i.e. the parameters aj(i) and aj,k(i).
In practice, however, the prior parameters are not exactly
known, although we may have an idea about their possible
variation domains1. In this case, these parameters may also
be estimated during an iterative projected gradient algorithm.
The derivatives of J with respect to the different unknowns
are listed below. In these formulas, ψ represents the Digamma
function, i.e. the logarithmic derivative of the Gamma func-
tion. For computing the derivatives of 1

2 ||X − AS||2F with
respect to the mixing parameters and the sources, we used the
results provided in Eq. (4) and (8) of [6].

∂J

∂θ`
= −η[Kψ(

L∑
j=1

θj)−Kψ(θ`) +

K∑
i=1

loga`(i)] (13)

∂J

∂ϑm,n
= −η[

K

ϑm,n
− 2ϑm,n

π

K∑
i=1

(am,n(i))2] (14)

∂J

∂am(`)
= [(AS −X)ST ]m` − η

θm − 1

am(`)
(15)

1For example, if we know that the observed scene is composed of highly-
mixed pixels, we should choose large values for θj . Moreover, since
aj,k(i) ∈ [0, 0.5], ϑj,k should take large values (corresponding to small
variances).

∂J

∂am,n(`)
= [(AS −X)ST ](mn)` + η

2ϑ2m,nam,n(`)

π
(16)

∂J

spn
= [AT (AS −X)]pn

+

L∑
j=1,j 6=p

sjn[AT (AS −X)](jp)n

+ 2spn[AT (AS −X)](pp)n, (17)

where e.g. (jp) is the index of the column of matrix A corre-
sponding to coefficients aj,p(n).
In each iteration of the projected gradient algorithm, the fol-
lowing rules are used to update the mixing parameters, source
samples and PDF parameters:

aj(i)← [aj(i)− µa
∂J

∂aj(i)
]P (18)

aj,k(i)← [aj,k(i)− µa
∂J

∂aj,k(i)
]P (19)

sji ← [sji − µs
∂J

∂sji
]P (20)

θj ← [θj − µθ
∂J

∂θj
]P (21)

ϑj,k ← [ϑj,k − µϑ
∂J

∂ϑj,k
]P , (22)

where µa, µs, µθ, µϑ are small fixed positive learning rates,
and [u]P corresponds to the projection of u on the interval
P . In fact, if after the gradient update the estimated value is
outside P , it is replaced by the value of the nearest bound of
P [11]. These intervals are [0, 1] for aj(i), [0, 0.5] for aj,k(i),
[0,∞) for sji. Concerning the parameters θj and ϑj,k, if
some information about their variation domains is available,
it can be used to choose the projection intervals, otherwise
[0,∞) is used.
At each iteration of the algorithm, (20) is used to update the
first rows of matrix S (corresponding to the actual sources),
then the last rows of S are set to the products of the first rows
(see [6] for details). To ensure that the sum of the abundance
fractions is equal to 1, we normalize the estimated values by
dividing them by their sum:

aj(i) =
aj(i)∑L
k=1 ak(i)

. (23)

4. SIMULATION RESULTS

The simulations presented in this section aim at evaluating the
gain of performance of our proposed method with respect to
the initial LQ-NMF method (Grd LQ algorithm presented in
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[6]) which does not exploit the prior information. The simu-
lations were done for L = 2 or L = 3 pure materials using a
special case of the LQ model (1), called the bilinear model,
where the coefficients of the squared terms, aj,j(i), are set to
zero. In order to evaluate the performance of the algorithms,
we compute the Signal-to-Interference Ratio (SIR) for each
source and each abundance fraction, defined by

SIRsi = 10log10

∑N
n=1 s

2
in∑N

n=1(sin − ŝin)2
(24)

SIRaj = 10log10

∑K
i=1 aj(i)

2∑K
i=1(aj(i)− âj(i))2

(25)

and the SIRaj,k as in (25) for each quadratic coefficient. In
these equations, “ˆ” refers to the estimated values.

4.1. Data

We considered the following two cases:
Case 1: The observations are artificial mixtures of two or
three synthetic spectra, with N = 126 values uniformly dis-
tributed over [0,1].
Case 2: The observations are artificial mixtures of two or
three real spectra encountered in urban environments, con-
taining 126 wavelengths from 0.4 µm to 2.5 µm (see Fig.1).2

In both cases, we simulated 100-pixel images. The abundance
fractions were generated using Dirichlet distributions with
θ = [70, 70] in the case of two sources and θ = [60, 60, 60]
in the case of three sources. These values correspond to a
highly-mixed scene without pure pixels. Quadratic coeffi-
cients were generated according to a half-normal distribution
with ϑj,k = 8.35 to obtain values of aj,k in [0,0.5].

Fig. 1. Spectra of used materials

4.2. Results

We used the initial Grd LQ algorithm and our proposed
method for separating the mixed data. Since the performance

2These spectra are from the MEMOIRES data base
(http://www.onera.fr/dota/memoires).

of the methods depends on initialization, we performed 100
Monte Carlo simulations for both algorithms. In each simula-
tion, the estimated parameters were initialized as follows: the
abundance fractions and sources with random values in [0,1],
the quadratic coefficients with random values in [0,0.5], θj
with large values between 50 and 80, ϑj,k with a large value
satisfying the constraint aj,k ∈ [0, 0.5]. The gradient learn-
ing rates were fixed to 0.0005 for µa and µs, and 0.01 for
µθ and µϑ. In our experiments the best results were obtained
when the value of the regularization parameter η was between
0.0001 and 0.001.
The mean and standard deviation of SIRs over all Monte
Carlo simulations and all sources or all mixing coefficients
are shown in Table 1. As can be seen, the proposed algorithm
leads to much better results as compared with the original
Grd LQ algorithm. These results demonstrate the relevance
of taking into account the prior information.

Table 1. Results for Case 1: artificial sources, and Case 2:
real sources, with L = 2 and L = 3 sources.````````````SIR (dB)

Algorithm Grd LQ MAP

Case 1
(L=2)

Mean/Std SIRa 11.65/5.74 30.80/2.31
Mean/Std SIRs 12.03/4.42 29.58/3.79

Case 2
(L=2)

Mean/Std SIRa 6.04/1.03 20.89/2.95
Mean/Std SIRs 14.73/0.36 20.85/3.12

Case 1
(L=3)

Mean/Std SIRa 5.38/1.45 28.78/1.07
Mean/Std SIRs 11.54/1.70 26.81/2.76

Case 2
(L=3)

Mean/Std SIRa 2.95/0.89 15.34/2.38
Mean/Std SIRs 11.73/0.93 15.37/1.07

5. CONCLUSION

In this paper, we proposed a new method to unmix urban
hyperspectral images. For this purpose, we modified a new
NMF method adapted to LQ mixtures by using available prior
information about the mixing parameters to better estimate
them. We defined a regularized criterion derived from the
MAP principle, then proposed a projected gradient algorithm
to estimate the different unknown parameters of the prob-
lem, i.e. the abundance fractions and quadratic coefficients,
endmembers, and PDF parameters. The simulation results
showed that the proposed algorithm leads to much better re-
sults than the initial non-regularized algorithm.
As future work, we will apply our method to real data. In
this case, the observed scene is first split in many supposedly
stationary sub-images so that the PDF parameters can be sup-
posed to be constant in each sub-image, then our unmixing
method is applied to each sub-image. We are also working on
other optimization algorithms to get rid of the fixed adaptation
step in the gradient algorithm.
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