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ABSTRACT

Hyperspectral unmixing consists in determining the reference spec-
tral signatures composing a hyperspectral image and their relative
abundance fractions in each pixel. In practice, the identified signa-
tures may be affected by a significant spectral variability resulting
for instance from the temporal evolution of the imaged scene. This
phenomenon can be accounted for by using a perturbed linear mix-
ing model. This paper studies an online estimation algorithm for the
parameters of this extended linear mixing model. This algorithm is
of interest for the practical applications where the size of the hyper-
spectral images precludes the use of batch procedures. The perfor-
mance of the proposed method is evaluated on synthetic data.

Index Terms— Multi-temporal hyperspectral image, linear
unmixing, endmember variability, online estimation, two-stage
stochastic program.

1. INTRODUCTION

Hyperspectral unmixing aims at identifying the reference spectral
signatures composing a hyperspectral image –referred to as endmem-
bers – and their relative abundance fractions in each pixel. When the
microscopic interactions between the materials and the scene relief
are negligible, a linear mixing model (LMM) is traditionally used to
describe hyperspectral data [1]. However, varying acquisition condi-
tions such as illumination or natural evolution of the scene can sig-
nificantly modify the acquired spectral signatures, thus affecting the
extracted endmembers from an image to another. In this context, un-
mixing several images acquired over the same area at different time
instants gives the opportunity to track the endmembers contained in
this area and to analyze the potential temporal variability.

So far, endmember variability has essentially been considered
for a single hyperspectral image [2–6]. However, some applications
require to unmix a sequence of multi-temporal hyperspectral im-
ages, which can preclude the use of batch estimation procedures due
to limited memory resources, contrasting with the batch approach
proposed in [7]. Moreover, a sequential analysis has the advantage
of processing any image individually, when it is acquired, avoiding
to handle a huge amount of data and avoiding any storage. This
sequential processing will be clearly interesting for the analysis of
the numerous multi-temporal images that will be regularly acquired
in the coming years (by the European Space agency1 for instance).
Since the identified endmembers can be considered as time-varying
instances of the desired reference endmembers, we exploit the per-
turbed linear mixing model (PLMM) proposed in [8] to account for
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spectral variability. Inspired by the works presented in [9, 10], we
formulate the unmixing problem associated with the PLMM as a
two-stage stochastic program and finally perform an online estima-
tion of its parameters.

The paper is organized as follows. The PLMM accounting for
temporal variability is introduced in Section 2. Section 3 investigates
a sequential algorithm to solve the optimization problem associated
with the PLMM in an online manner. Experimental results obtained
on synthetic data are reported in Section 4. Conclusions are finally
reported in Section 5.

2. PROBLEM STATEMENT

2.1. Perturbed linear mixing model (PLMM)

Consider hyperspectral images sharing the same K endmembers –
where K is known – whose pixels are similarly affected by spec-
tral variability. The nth pixel of the tth hyperspectral image ynt

is modeled by a linear combination of the K endmembers – de-
noted as m1, . . .mK – affected by a time-varying perturbation vec-
tor dmkt accounting for temporal endmember variability. The re-
sulting PLMM [8] can be written as

ynt =
K∑

k=1

aknt

(
mk + dmkt

)
+ bnt (1)

for n = 1, . . . , N and t = 1, . . . , T , where mk is the kth endmem-
ber, aknt is the proportion of the kth endmember in the nth pixel of
the image ]t, dmkt denotes the perturbation of the kth endmember
at time t and bnt denotes the noise resulting from the data acquisi-
tion and the modeling errors. In matrix form, the model (1) can be
expressed as

Yt = (M + dMt)At + Bt (2)
where Yt = [y1t, . . . ,yNt] is an L × N matrix containing the tth
image pixels, M denotes an L×K matrix containing the endmem-
bers, At is a K × N matrix composed of the abundance vectors
ant = [a1nt, . . . , aKnt]

T , dMt is an L×K matrix whose columns
are the perturbation vectors at time t, and Bt is an L × N matrix
containing the noise terms. The non-negativity and sum-to-one con-
straints usually considered to reflect physical considerations are

At � 0K,N , AT
t 1K = 1N , ∀t = 1, . . . , T (3)

M � 0L,K (4)

where � stands for term-wise inequality. We further assume the
following constraints

‖dMt‖2F ≤ σ
2, for t = 1, . . . , T (5)∥∥∥∥∥

T∑
t=1

dMt

∥∥∥∥∥
2

F

≤ κ2 (6)
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where σ and κ are predefined positive constants. The constraint (5)
sets a limit on the variability energy, whereas (6) constrains the en-
ergy of the average temporal variability to be small. In other words,
(6) ensures that the endmember signatures (i.e., each column of M)
will be close to the mean of the corresponding perturbed endmem-
bers. We denote as AK ,M and Dt the spaces associated with the
constraints relative to the abundances (see Eq. (3)), the endmem-
bers (see Eq. (4)) and the variability (see Eqs. (5) and (6)). The
multi-temporal unmixing procedure proposed in this paper is aimed
at estimating At, M and dMt without loading all the images simul-
taneously into memory.

2.2. Problem formulation

The unmixing problem introduced in the previous section can be for-
mulated as a two-stage stochastic problem associated with the fol-
lowing empirical risk minimization

min
M∈M

1

T

T∑
t=1

h(Yt,M) + βΨ(M) (7)

h(Yt,M) = min
(A,dM)∈AK×Dt

f(Yt,M,A,dM) (8)

where Ψ is an endmember regularization term. f represents a regu-
larized instantaneous discrepancy measure, and h denotes the cost of
the tth optimal decision taken to update the endmembers M given
the data available at time t. Strictly speaking, h should be a set-
valued function since f is not necessarily convex with respect to
(A,dM). In this work, we assume that, for fixed Yt and M,
f(Yt,M, ·, ·) admits locally unique stationary points, and we con-
sequently define h(Yt,M) as the value of f(Yt,M, ·, ·) at the sta-
tionary point (At,dMt) that any non-convex optimization method
yields from a given starting point (A

(0)
t ,dM

(0)
t ). Assuming the

noise matrix in (2) is white and Gaussian, f can be defined as

f(Y,M,A,dM) =
1

2
‖Y − (M + dM)A‖2F

+ αΦ(A) + γΥ(dM)
(9)

where Φ and Υ are appropriate penalty terms, and the penalization
parameters α, β, γ control the trade-off between the data fitting term
and the penalties. The expression of the penalties considered in this
paper are detailed below.

The abundance and variability penalties Φt and Υt (t =
1, . . . , T ) are chosen to promote smooth time variations between
two consecutive images [12], i.e.,

Φt(A) =
1

2
‖A−At−1‖2F (10)

Υt(dM) =
1

2
‖dM− dMt−1‖2F (11)

since the images are assumed to be acquired at time instants close
from one another (i.e., only exhibit a smooth temporal variation).
Classical endmember penalizations found in the literature aim at
constraining the size of the (K − 1)-simplex whose vertices are the
endmembers. In this paper, we consider the mutual distance between
the endmembers introduced in [13, 14], expressed as

Ψ(M) =
1

2

K∑
i=1

(
K∑

j=1

j 6=i

‖mi −mj‖22

)
. (12)

Algorithm 1: Online unmixing algorithm.
Data: M0, A0, dM0, α > 0, β > 0, γ > 0, ξ ∈]0, 1]
begin

C0 ← 0K,K ;
D0 ← 0L,K ;
E0 ← 0L,K ;
for t = 1 to T do

a Random selection of an image Yt ;

// Abundance and variability estimation
by PALM [11], cf. §3.1

b (At,dMt) ∈ argmin
(A,dM)∈AK×Dt

f(Yt,Mt,A,dM);

Ct ← ξCt−1 +AtAT
t ;

Dt ← ξDt−1 + (dMtAt −Yt)AT
t ;

Et ← ξEt−1 + dMt ;

// Endmember update [10, Alg. 2], cf.
§3.2

c Mt ← argmin
M∈M

ĝt(M) ;

Result: MT , (At)t=1,...,T , (dMt)t=1,...,T

3. AN ONLINE UNMIXING ALGORITHM

Whenever an image Yt is received, we propose to solve the local
problem (8), i.e., to estimate the abundances and the variability, by
using a proximal alternating linearized minimization (PALM) [11]
which is guaranteed to converge to a critical point of f(Yt,Mt, ·, ·).
The endmembers are then updated by proximal gradient descent
steps to solve (7) in the limit, similarly to [10]. The main algo-
rithm is summarized in Algorithm 1 and detailed in the following
paragraphs.

3.1. Abundance and variability estimation

Applying PALM [11] to the abundance and the variability estimation
leads to the following update rule

A
(k+1)
t = PAK

(
A

(k)
t − 1

λ
(k)
t

∇Af(Yt,Mt,A
(k)
t ,dM

(k)
t )

)
λ
(k)
t = γ1L

(k)
1t , γ1 > 1

where k denotes the current PALM iteration, L(k)
1t is the Lipschitz

constant of ∇Af(Yt,Mt, ·,dM(k)
t ) and PAK is the projector on

AK [15, 16]. The variability term is similarly updated by
dM

(k+1)
t =

PDt

(
dM

(k)
t − 1

ν
(k)
t

∇dMf(Yt,Mt,A
(k+1)
t ,dM

(k)
t )

)

ν
(k)
t = γ2L

(k)
2t , γ2 > 1

where PDt is the projector on Dt and L(k)
2t is the Lipschitz constant

of ∇dMf(Yt,Mt,A
(k+1)
t , ·). This projection is computed by the

Dykstra algorithm [17, 18]. Indeed, we can introduce an auxiliary
variable Et and observe that

Dt = BF(0, σ) ∩ {dMt : ‖dMt + Et−1‖F ≤ κ}

Et−1 =

t−1∑
i=1

dMi.

where BF(0, σ) denotes the Frobenius ball of radius σ centered in 0.
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3.2. Endmember estimation

A direct application of the method detailed in [10] leads to the fol-
lowing endmember update rule

M
(k+1)
t = P+

(
M

(k)
t − 1

µ
(k)
t

∇Mĝt(M
(k)
t )

)
µ
(k)
t = γ3L3t, γ3 > 1

with
ĝt(M) =

1

2t

t∑
i=1

‖Yi − (M + dMi)Ai‖2F + βΨ(M)

=
1

t

[
1

2
Tr(MTMCt) + Tr(MTDt)

]
+ βΨ(M)

Ct =
t∑

i=1

AiA
T
i , Dt =

t∑
i=1

(dMiAi −Yi)A
T
i .

where k denotes the current iteration of the endmember update sub-
problem, P+ is the projector on {X : X � 0L,K} and L3t denotes
the Lipschitz constant of∇Mĝt.

3.3. Convergence

The convergence of the generated endmember sequence (Mt)t to-
wards a critical point of the problem (7) can be ensured provided the
function f(Yt,M, ·, ·) exclusively admits locally unique stationary
points, which is the case for the function f proposed in this paper.
Thereby slightly adapting the arguments used in [10] to our problem,
we recover a similar convergence result. This point is detailed in the
extended paper [19]. Note that adding a forgetting factor ξ as in Al-
gorithm 1 slightly modifies the expression of the function actually
minimized, but does not alter the convergence proof.

4. EXPERIMENT WITH SYNTHETIC DATA

The proposed method has been first evaluated on a dataset composed
of 15 images of size 31 × 30, where each image is a linear mixture
of K = 3 corrupted endmembers – generated as detailed in [8] –
composed of L = 413 spectral bands. All the mixtures have been
corrupted by an additive white Gaussian noise ensuring a signal-to-
noise ratio of 30dB. Note that each image of the series does not
necessarily fulfill the pure pixel assumption in order to evaluate the
method in a challenging situation.

4.1. Sate-of-the-art methods

The proposed strategy was compared to two classical algorithms
VCA [20] / FCLS [21, 22] and SISAL [23]/ FCLS independently
applied to each image of the time series. For the proposed approach,
the variability terms were initialized with all their entries equal to
zero. The endmembers were initialized with the VCA algorithm ap-
plied to the union of the sets of points belonging to the convex en-
velope of the (K − 1)-simplices containing the image pixels. The
abundances were initialized using the FCLS algorithm.

Algorithm 1 was run for 50 cycles through the whole dataset (see
[10]), and the inner PALM and proximal gradient descent algorithms
were respectively stopped after Niter = 50 iterations. The values of
all the other parameters are ξ = 0.99, γi = 1.1 for i ∈ {1, 2, 3},
α = 3.9×10−2, β = 5.4×10−4, γ = 3.2×10−4, σ2 = 12.4, κ2 =
1.9. Note that (α, β, γ) was chosen such that each initial penalty
term of the first image represents 10% of the initial data fitting term,
whereas (σ2, κ2) was selected by cross-validation.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1. Endmembers (red lines) and variability (blue dotted lines)
[true endmembers and variability on the first line, endmembers re-
covered by the proposed method on the second line, VCA-extracted
endmembers on the third line, SISAL-extracted endmembers on the
last line].

The performance of the algorithm is assessed in this paper in
terms of average spectral angle mapper (aSAM) for the endmem-
bers, and in terms of global mean square errors (GMSEs) for the
estimated abundances and perturbations. Finally, the reconstruction
error (RE) providing a measure of fit between the actual images and
their estimations is also considered. All these performance measures
are defined below

aSAM(M) =
1

K

K∑
k=1

arccos

(
〈mk|m̂k〉
‖mk‖2‖m̂k‖2

)

GMSE(A) =
1

TKN

T∑
t=1

‖At − Ât‖2F

GMSE(dM) =
1

TLK

T∑
t=1

‖dMt − d̂Mt‖2F

RE =
1

TLN

T∑
t=1

‖Yt − Ŷt‖2F

where Ŷt is the matrix formed by the pixels reconstructed with the
estimated parameters Ât, M̂ and d̂Mt.

4.2. Results

The performance of the different unmixing methods are provided in
Table 1. The proposed approach provides competitive results when
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Fig. 2. First endmember abundance maps [0: black, 1: white] (true maps on the first row, proposed method on the second, VCA/FCLS on the
third, SISAL/FCLS on the fourth). Each column corresponds to a time instant t.

Fig. 3. Second endmember abundance maps [0: black, 1: white] (true maps on the first row, proposed method on the second, VCA/FCLS on
the third, SISAL/FCLS on the fourth). Each column corresponds to a time instant t.

Fig. 4. Third endmember abundance maps [0: black, 1: white] (true maps on the first row, proposed method on the second, VCA/FCLS on
the third, SISAL/FCLS on the fourth). Each column corresponds to a time instant t.

compared to other methods and exhibits lower aSAMs and GMSEs,
at the price of a higher computational cost. As expected, the abun-
dance maps returned by the proposed approach are more convincing
than the ones obtained by VCA/FCLS or SISAL/FCLS. Indeed, the
proposed unmixing method accurately renders the smoothness of the
abundance evolution by sequentially exploiting all the images and
accounting for variability, whereas the two classical methods do not.
Note that the improved estimation performance reported in Table 1
mainly results from the multi-temporal information exploited by the
online unmixing strategy.

5. CONCLUSION AND FUTURE WORK

This paper introduced an online hyperspectral unmixing procedure
accounting for endmember temporal variability based on the per-
turbed linear model proposed in [8]. The resulting unmixing prob-
lem was formulated as a two-stage stochastic program solved by an
online algorithm to avoid the use of batch procedures when con-

fronted to large hyperspectral images. Simulations conducted on
synthetic data allowed the interest of the proposed approach to be
appreciated. Applying this method to large real data and addressing
abrupt endmember changes are currently investigated. Another pos-
sible perspective would consist in incorporating spatial variability
into the proposed method.

Table 1. Simulation results obtained with synthetic data
(GMSE(A)×10−2, GMSE(dM)×10−4, RE ×10−5).

VCA/FCLS SISAL/FCLS Prop. method

aSAM(M) (°) 8.9792 8.6685 1.9898
GMSE(A) 6.67 3.90 0.47
GMSE(dM) / / 3.07
RE 9.59 9.49 9.63
time (s) 2 2.2 561
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