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ABSTRACT 

 

Hyperspectral image (HSI) classification has attracted much 

attention and extensive research efforts over the past decade.  

Due to few labeled samples versus high dimensional fea-

tures, it is a challenging problem in practice. Recently, 

combining the pixel spectral information and the spatial 

(neighborhood) information has been verified to be effective 

for HSI classification. In this paper, we introduce a novel 

method for HSI classification using set-to-set distance 

(SSD). Based on the assumption that neighbor pixels tend 

to belong to the same class with high probability, we model 

a test pixel and its neighbor pixels as a testing set (or a 

neighbor set) inspired by bilateral filtering. Meanwhile, the 

training pixels belong to the same class are modeled as a 

training set. Therefore, the classification is based on com-

parisons of sets distances. Experiments on a real HSI da-

taset show that our proposed method outperforms a number 

of existing state-of-the-art approaches. 

 

Index Terms—Remote Sensing, Hyperspectral image 

classification, spatial information, set-to-set distance, set 

classification. 

 

1. INTRODUCTION 

 

Recent advances in Hyperspectral Remote Sensor (HRS) 

technology allow the simultaneous acquisition of hundreds 

of narrow contiguous spectral bands with a fine spectral 

resolution for each image pixel. This detailed spectral in-

formation about the materials in the scene increases the 

possibility of more accurately discriminating ground objects 

[1-6]. Hyperspectral image (HSI) classification plays an 

important role in remote sensing.  It has been used in vari-

ous thematic applications including ecological science, geo-

logical science, hydrological science, precision agriculture 

and military applications. 

Hyperspectral images with high spatial resolution pro-

vide new opportunities of analyzing small spatial structures 

in images. In general, hyperspectral images usually have 

flat and large homogeneous regions that consist of the same 

type of material (i.e., same class). Compared to the classifi-

ers solely using spectral information, classifying image 

pixels by taking into account the spatial (neighborhood) 

information has been verified to be very effective, especially 

for high spatial resolution images. 

For example, morphological profile (MP) generated by 

the morphological operators (e.g., opening and closing), is 

applied to model structural information in [7]. Qian et al. [8] 

introduced the 3-D discrete wavelet transform to effectively 

capture the spatial information of HSI in different scales 

and orientations. In [9, 10], Markov random field (MRF) 

was employed as a post-processing step to enhance the re-

sults of support vector machine (SVM) [11] by incorporat-

ing the spatial-context information based on the results of 

SVM, namely SVM-MRF. In addition, researchers have 

also explored simultaneous spectral and spatial information 

within the designed classifier. Camps-Valls et al. designed 

a composite kernel to combine both the spectral and spatial 

information for SVM. The resulting classifier is referred to 

as SVM-CK [12]. As a powerful tool for statistical signal 

modeling, sparse representation (or sparse coding) has been 

successfully used in image processing [13-16] and comput-

er vision [17, 18] applications, and recently has led to 

promising results in HSI classification [19]. In [19], simul-

taneous orthogonal matching pursuit (SOMP) and OMP 

with smoothing (OMP-S) were developed to incorporate the 

contextual information for the HSI classification task. Li et 

al. proposed a joint collaborative representation with 

Tikhonov regularization (JCR-TR) considering four differ-

ent strategies of incorporating contextual information [20].  

To simultaneously incorporate the spectral and spatial 

information for HSI classification, in this paper we propose 

a novel algorithm based on set-to-set distance (SSD). Ex-

perimental results on one real HSI dataset demonstrate the 

proposed method outperforms other state-of-the-art spec-

tral-spatial based HSI classification techniques. 

The structure of this paper is as follows: Section 2 pre-

sents the motivation and contributions of this paper. Sec-

tion 3 provides a detailed description of the proposed meth-

od by firstly introducing the strategy of generating the 

neighbor set, secondly showing the set distance measure-

ment approach, and lastly summarizing the overall SSD 

based HSI classification algorithm. The experimental re-

sults and their discussion are stated in Section 4. Finally, 

the conclusion appears in Section 5. 
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2. MOTIVATION AND CONTRIBUTIONS 

 

As far as utilizing space neighbor information for HSI clas-

sification, existing methods mostly use the coding-residual 

approach. They first encode the pixel (with/without the 

spatial information) on the training samples collaboratively 

or sparsely, and then use the residual errors of the represen-

tation to classify the test pixels. In this paper, we propose 

an SSD based HSI classification approach. Fig. 1 illustrates 

the diagram of using SSD for HSI classification. As shown 

in the flow diagram, for a test pixel to be classified, we first 

search its neighbor set (including itself) and utilize this 

neighbor set to represent it. Then, we use the SSD to meas-

ure the distance between the neighbor set of the test pixel 

and the training samples within each class, which can be 

seen as a set modeled by the affine hulls of the spectral fea-

ture vectors. Lastly, the class label of the test pixel is as-

signed according to the minimum set distance. In summary, 

the main contributions of this paper lie in the following 

three aspects:  

 It casts the HSI classification as the problem of meas-

uring the set distance. 

 Inspired by the merits of bilateral filtering, we propose 

a neighbor set generation method that considers the 

pixel density similarity and the spatial distance simul-

taneously. 

 Experimental results demonstrate that our proposed 

SSD based method is superior to the state-of-the-art 

spectral-spatial based HSI classification methods. 

 
3. PROPOSED METHOD 

 

Consider a dataset with n  total training samples 1{ }n

i iX x   

in Rd  ( d  is the dimensionality) and class labels 

{1,2,..., }iw C , where C  is the number of classes. Let ln  be 

the number of available training samples for the l -th class, 

1

C

l

l

n n


 . Thus the training samples X  can be partitioned 

into l  different class-specific subset according to their class 

labels, { | s.t. }l i iX x i w l   . Given a test pixel y , the 

task of HSI classification is to assign a class label to y . 

 
3.1 Neighbor set generation 

In this subsection, we give the details of how to generate 

the neighbor set of a given test pixel y . Bilateral filter is an 

edge-preserving and noise-reducing smoothing filter for images. 

The intensity value of each pixel in an image is replaced by a 

weighted average of intensity values from nearby pixels. The 

weights depend not only on the Euclidean distance of pixels, 

but also on the pixel intensity. In this paper, we borrow the idea 

of bilateral filtering to form a neighbor set for each test pixel. 

More specifically, the selected pixels in a neighbor set should 

be near and similar to the test pixel. To this end, we first set a 

spatial window centered at the test pixel. We then choose the 

pixels that are similar to the test pixel as the neighbor set. 

Thus, the neighbor set Y  can be mathematically defined as 

follows: 

2

{ | ( )}

1
{ | ( ) ( )}

i i

i i ii

Y y y y

y dist y y c dist y y
L

 

   
, (1) 

where ( )y  is the pixel set within the spatial window of 

size L L , 
2

1
( )ii

dist y y
L

  is the mean distance between 

the test pixel y  and each pixel in the window, and c  is a 

parameter that controls the number of pixels in the neigh-

bor set. In Eq. (1), ( )iy y  can ensure that the selected 

pixels in neighbor set is near (or close) to the test pixel, and 

2

1
( ) ( )i ii

dist y y c dist y y
L

    can ensure the selected pixels 

in neighbor set are similar to the test pixel. 

 
3.2 Set distance measurement 

We cast the HSI classification as the problem of measuring 

the set distance between the neighbor set Y  and the train-

ing subsets lX  (each training set is composed of the train-

ing samples with the same class label). Mathematically, 

given two pixel sets 1{ }t

i iY y   and 1{ } ln

l l lX x  , our goal is to 

calculate the set to set distance between them, i.e., ( , )ld Y X . 

 

Fig.1. Flow diagram of the proposed SSD based HSI classification method. 
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3.2.1 Pixel set model 

A pixel set is usually represented by a hull, i.e., a subspace 

spanned by all the available pixels in the set. The hull of Y  

and 
lX  are defined as ( ) { }H Y Y  and ( ) { }l lH X X   re-

spectively, where T

1 2[ , ,..., ]t     and T

1 2[ , ,..., ]
ln    . 

Usually, 1ii
   and 1ll

   are required: 

                        
1

( ) { | 1}
t

i i ii
i

H Y y 


             (2) 

           
1

( ) { | 1}
ln

l l l ll
l

H X x  


   .                        (3) 

 
3.2.2 Set-to-set distance (SSD) 

Given two pixel sets Y  and 
lX , the SSD between them is 

defined as  
2

2
ˆˆ( , ) || ||l ld Y X Y X     s.t.  ˆ 1ii

   and ˆ 1ll
  ,  (4) 

where ̂  and ̂  can be solved by: 
2

2
,

ˆˆ( , ) argmin || ( ) ( ) ||lH Y H X
 

          

s.t.     1ii
   and 1ll

  .              (5) 

Based on the constraints that 1ii
   and 1ll

  , (5) 

can be converted to the following unconstrained optimiza-

tion problem: 
2 2

2 2
,

T

1 2 1 1 2 1

T 2

1 2 1 1 2 1 2

ˆˆ( , ) arg min || ( ) ( ) || || ||

ˆ ˆ ˆ|| {[ , ,.., ][ , ,..., ] }

ˆ ˆ ˆ{[ , ,.., ][ , ,..., ] } ||

,

l l l

l

l l

t t t

n n n

t n

H Y H X Y X

y y y y

x x x x

Z y x

 

   

  

  



 

 

   

 

 

  
 (6) 

where ˆ
i i ty y y  , 1,2,..., 1i t  , ˆ

ll l nx x x  , 1,2,..., 1ll n  , 

1 1 1 1
ˆ ˆ ˆ ˆ[ ,.., , ,.., ]

lt nZ y y x x  , and T

1 1 1 1[ ,..., , ,..., ]
lt n      . 

Therefore, the solution to (5) is:  
1 T

1 2 1 1
ˆ ˆ ˆ ˆ ˆ[ , ,..., ,1 ]

t

t ii
    



 
   

and 
2 T

1 2
ˆ ˆ ˆ ˆ ˆ[ , ,..., ,1 ]

l

l

t n

t t t n ll t
    

 

   
  , 

where T 1 Tˆ ( ) ( )
ln tZ Z Z x y   . Therefore, the distance be-

tween two pixel sets Y  and lX
 
is calculated as  

T 1 T( , ) ( ) ( )
l ll n t t nd Y X Z Z Z Z x y y x    .  (7) 

 
3.3 Summary of the proposed algorithm 

To better understand the proposed SSD based HSI classifi-

cation algorithm, we summarize each step of the algorithm 

as follows: 

a)  Search the neighbors of a test pixel to get the corre-

sponding neighbor set Y  using the strategy presented 

in Section 3.1. 

b)  For each class of the training samples, construct a ma-

trix lX . 

c)  Compute the matrix Z  through 

1 2 1 1 2 1
ˆ ˆ ˆ ˆ ˆ ˆ[ , ,.., , , ,.., ]

lt nZ y y y x x x  . 

d)  Find the estimation of ̂  for (6) according to 
T 1 Tˆ ( ) ( )

ln tZ Z Z x y   . 

e)  Calculate the distance between two pixel sets Y  and 

lX  via (7). 

f)  Repeat c) to e) and assign the test pixel to the class 

that has the smallest SSD. 

 

3.4 Connections to existing coding-residual based meth-

ods 

Let’s revisit the objective functions of the coding-residual 

(CR) based methods and the proposed SSD method: 

(CR)              2

2
ˆ argmin || || ( )lY X



        

(SSD)            2

2
,

ˆˆ( , ) argmin || ||lY X
 

      

        s.t.    1ii
    and   1ll

  . 

In CR, Y can be a test pixel only or a test pixel and its 

nearest neighbors, and ( )  denotes some priors about the 

solution of  , which can be modeled by collaborative, 

sparse or local regularization. From these two objective 

functions, we learn that the core difference between CR and 

SSD lies in their ways of representation: CR method is 

based on single representation while SSD method is dual. 

In other words, CR method fixes the test samples, while 

SSD method gives different freedom to each test sample by 

an additional vector  . Therefore, SSD method has more 

powerful ability in utilizing the spatial information (i.e., 

test samples). 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 
 

In this section, different classification strategies using spec-

tral and spatial information are compared using a real HSI 

dataset, Pavia University (PaviaU) dataset. PaviaU dataset 

has a spatial dimension of 610×340 pixels. Twelve chan-

nels (or spectral bands) were removed due to low signal to 

noise ratio (SNR). The remaining 103 spectral channels 

were left for further analysis. As shown in Fig. 2, there are 

nine ground-truth classes: tree, asphalt, bitumen, gravel, 

metal sheet, shadows, bricks, meadow, and soil. There are 

42776 labeled pixels for the PaviaU dataset. Detailed in-

formation of the number of training and testing samples 

used for this dataset is summarized in Table 1.  

Parameter tuning. We investigate the parameters of 

neighbor set generation in the proposed method, i.e., the 

window size and the parameter c  which controls the num-

ber of neighbors in the neighbor set. In Fig. 1, we report the 

performance demonstrating the sensitivity of the proposed 

method over a wide range of these two parameters, e.g., the 

window size varies from 1 to 15 and the parameter c  varies 

from 0.1 to 100. As for the window size, when it is set to 7

×7, the proposed method achieves the best performance. 

This is mainly because that small window size may not able 
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to capture important spatial information, while large win-

dow size may introduce some irrelative information, e.g., 

pixels from other classes. The parameter c  plays an im-

portant role in selecting similar pixels with the same class 

while rejecting dissimilar pixels belong to different classes. 

When 1.1c  , the proposed method achieves the highest 

classification accuracy. Therefore, in all our experiments, 

we set the window size to 7×7 and parameter c  to 1.1. 
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Fig. 1. The overall classification accuracy (%) versus the window 

size (left) and the parameter c (right). 

 
Comparisons to state-of-the-art results. Eight state-of-

the-art methods for HSI classification are used to make ho-

listic comparisons with our method. These methods include 

three SVM based approaches (SVM [11], SVM-CK [12] 

and SVM-MRF [10]), three sparse representation based 

approaches [19] (OMP, SOMP and OMP-S), and two col-

laborative representation based methods (JCR-TR [20] and 

NSR [21]). To facilitate a fair comparison, we follow the 

same experimental setting in [20]. Specifically, the num-

bers of test and train samples are shown in Table 1. In this 

table, we also report the quantitative evaluation results in 

terms of the classification accuracies (class-specific and 

overall accuracy) of different methods on the PaviaU da-

taset. As evident from this table, our proposed SSD method 

achieves the best performance in terms of overall accuracy 

(i.e., 97.92%). The improvement of SSD over the second 

best method, i.e., Li et al.’s JCR [20], is 1.30%. In the 

competition of all 9 classes, our proposed method obtains 

the best classification accuracy in four classes (“Asphalt”, 

“Bare soil”, “Meadows”, and “Metal sheets”), and show 

strong competitiveness in other classes. This improvement 

can be explained as follows: by modeling the test and train-

ing sets as affine hulls, our proposed method has much 

more flexible in using the spectral and spatial information 

in HSI classification. In other words, SSD can gives differ-

ent freedom to each test sample, while the traditional meth-

ods treat all test samples equally. 

 
(a)                                       (b)                           

Fig. 2. Pavia University image. (a) is the false color image using 

three spectral bands, and (b) is the ground truth map. 

 
5. CONCLUSIONS 

 

In this paper, we developed a novel method for Hyperspec-

tral image (HSI) classification based on set-to-set distance 

(SSD). It is the first time that we introduce the set distance 

for HSI classification. Our proposed method characterizes 

each training set (where the samples all have the same class 

label) from the training sample pixels and the test set (in-

cludes the test pixel and its neighbor pixels selected by bi-

lateral filtering criterion) in terms of the affine hulls of the 

spectral feature vectors. Classification is performed by find-

ing the training set that is closest to the test set in the sense 

of minimum distance between convex sets. Experimental 

results on a real hyperspectral image verified that the pro-

posed algorithm is superior to the state-of-the-art spectral-

spatial based HSI classification methods. 

Table 1. Classification accuracy (%) for the University of Pavia dataset. 

Class 
# samples Classification algorithms 

Train Test SVM SVM-CK SVM-MRF OMP SOMP OMP-S NRS JCR-TR SSD 

Asphalt 

Bare soil 

Bitumen 

Bricks 

Gravel 

Meadows 

Metal sheets 

Shadows 

Trees 

60 

60 

60 

60 

60 

60 

60 

60 

60 

6631 

18649 

2099 

3064 

1345 

5029 

1330 

3682 

947 

80.29 

84.32 

82.84 

92.26 

99.11 

89.12 

92.01 

79.71 

99.79 

84.68 

96.85 

89.52 

96.64 

99.70 

93.64 

97.44 

88.10 

99.79 

95.39 

89.89 

90.95 

96.74 

99.41 

99.54 

96.32 

95.93 

99.79 

57.58 

73.04 

72.70 

91.84 

99.33 

64.86 

89.17 

62.19 

97.04 

50.08 

79.87 

85.66 

92.23 

100 

70.87 

97.59 

67.93 

90.50 

55.63 

78.89 

86.61 

94.71 

100 

72.94 

93.08 

63.96 

98.84 

82.05 

80.05 

79.80 

95.76 

99.55 

92.27 

94.89 

87.06 

99.47 

93.30 

97.36 

93.66 

97.52 

100 

99.20 

98.50 

94.38 

96.62 

97.35 

99.40 

91.66 

95.04 

99.93 

99.98 

99.92 

93.64 

95.78 

Overall Accuracy (%) 84.06 93.63 93.66 71.94 75.76 76.36 83.94 96.62 97.92 
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