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ABSTRACT

This paper presents a new algebraic solution for the Doppler
positioning problem where the position of a stationary emit-
ter is estimated from Doppler frequency measurements col-
lected by a single low-earth-orbit (LEO) satellite. The pro-
posed algebraic solution can be used for effective initializa-
tion of more sophisticated iterative algorithms as it produces
estimates sufficiently close to the actual position of the emit-
ter to ensure convergence. It is computationally more efficient
than existing initialization techniques, based on the point of
closest approach, which require expensive nonlinear curve fit-
ting procedures. The effectiveness of the proposed algebraic
solution is demonstrated by way of numerical simulations.

Index Terms— Emitter geolocation, satellite navigation,
search and rescue operations, Doppler-shifted frequency, al-
gebraic solution

1. INTRODUCTION

Passive emitter geolocation using Doppler frequency mea-
surements has been an area of substantial research interest
for many years thanks to its wide-ranging applications in
acoustic source localization, radar and sonar systems, and
satellite positioning and navigation [1–22]. One of the most
important applications of Doppler-based geolocation is found
in the COSPAS-SARSAT distress alerting satellite system
for search and rescue missions [10–22]. More than one mil-
lion COSPAS-SARSAT distress beacons have been registered
around the world. These distress beacons, operating at the
international distress frequency of 406 MHz, can be activated
anytime in an emergency situation. Emergency distress sig-
nals are relayed by satellites to ground tracking stations that
compute the distress location and immediately inform the
rescue authorities about the distress alert.

In the COSPAS-SARSAT system, the location of a sta-
tionary emitter, i.e., a distress beacon, is determined from
Doppler frequency measurements collected by a single low-
earth-orbit (LEO) satellite. Existing techniques for satellite
Doppler positioning (see, e.g., [17–21] and the references
therein) were developed based on numerical iterative least-
squares algorithms due to the nonlinearity of the Doppler

equation. These iterative least-squares algorithms require an
appropriate initialization to avoid divergence problems. Most
initialization methods reported in the literature rely on calcu-
lations around the point of closest approach (PCA) [19–22].
The PCA, referred to as the satellite position with the closest
distance to the emitter, can be determined from the inflection
point of the observed Doppler curve. The emitter position
can be subsequently computed from the slope of the Doppler
curve at the PCA as well as the knowledge of satellite position
and velocity. However, the main disadvantage of these ini-
tialization methods is that they require nonlinear curve fitting
to observed Doppler points [16, 21], which is implemented
through computationally-expensive high-order polynomial
curve fitting. The large number of polynomial coefficients
to be estimated increases the sensitivity of PCA estimates
to Doppler measurement noise. The PCA can also be esti-
mated from the data point with a zero Doppler-shift, but this
approach requires high-accuracy frequency measurements
(high SNR), as well as a high stability in transmitted fre-
quency [16]. Another initialization approach was proposed
in [17] based on a finite grid around the midpoint of satel-
lite pass, in which different points in the grid are selected as
the initial value for the iterative algorithm until convergence
is achieved. However, this brute-force approach becomes
computationally demanding as the size of the grid increases.
Moreover, if the selected initial value is not close to the actual
emitter position, the iterative algorithm may converge to a
local optimum value and thus result in a wrong estimate of
the emitter position.

In this paper we propose a new low-complexity algebraic
solution for satellite Doppler positioning. The main advan-
tage of the present work is that the proposed algorithm offers a
closed-form solution which is computationally much cheaper
than the existing PCA-based initialization techniques. More
importantly, the proposed algorithm provides a good initial
estimate of the emitter position, which is sufficiently close
to the actual emitter position to enable convergence of the it-
erative algorithms. In a related work [8], a closed-form so-
lution was developed for geolocating a radar emitter using
Doppler frequency measurements obtained from a moving
sensor platform. This approach can be adopted for satellite
Doppler positioning if multiple satellite passes with different
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Fig. 1. Satellite-emitter geometry in rectilinear motion model.

satellite tracks are available. Given that a LEO satellite takes
around 100 minutes to complete an orbit around the earth,
multiple satellite passes can result in very long waiting times,
greatly delaying search and rescue operations. The long time
interval between multiple satellite passes has been the main
reason for studying scenarios with a single satellite pass (see
e.g., [11–14, 17–20]). Motivated by this consideration, we
aim to derive a closed-form solution of the emitter position
from the Doppler measurements obtained from a single satel-
lite pass only. Our algebraic solution, in contrast to the one
in [8], can be used to initialize the iterative single-pass algo-
rithms, e.g., in [17–20]. It can also be used to initialize iter-
ative multiple-pass algorithms, e.g., [21], by averaging emit-
ter position solutions obtained from each satellite pass. We
observe from simulation results that the iterative maximum-
likelihood algorithm initialized by the algebraic solution pro-
posed in this paper closely achieves the Cramér-Rao lower
bound (CRLB), thus demonstrating the effectiveness of the
proposed algebraic algorithm for initialization purposes.

2. PROBLEM FORMULATION

In this paper the actual elliptical satellite orbit over the oblate
spheroid-shaped Earth is replaced by the rectilinear model of
the satellite motion proposed in [11, 12], where the satellite
follows a uniform rectilinear motion at a fixed height over a
flat Earth’s surface as depicted in Fig. 1. Since the height of
LEO satellites is relatively small compared to the Earth’s ra-
dius, this model is an adequate approximation of the actual
satellite orbit in the sense that our aim is to obtain a suffi-
ciently good emitter position estimate to initialize iterative
Doppler positioning algorithms. Moreover, this simple rec-
tilinear model allows for an algebraic solution of the emitter
position to be derived, leading to a computationally inexpen-
sive estimator.

In the satellite-emitter geometry shown in Fig. 1, the satel-
lite moves along the positive direction of the x-axis with a

constant speed of V over the Earth’s surface at a fixed height
of h. The emitter position can be characterized by the PCA
point x

PCA
and the distance d from the emitter position to

the satellite subtrack (the ground projection of the satellite or-
bit). The algebraic solution proposed in this paper aims to
estimate xPCA and d fromN noisy Doppler-shifted frequency
measurements f̃k taken at satellite positions xk at time in-
stants k ∈ {1, . . . , N}. The Doppler-shifted frequency mea-
surement at time instant k is given by

f̃k = fk + nk, fk = fo

(
1 +

V cosαk
c

)
(1)

where fo is the frequency of the distress beacons, c is the
speed of signal propagation, αk is the relative angle be-
tween the x-axis and the vector pointing from the satellite
to the emitter at time instant k as shown in Fig. 1, and
nk ∼ N (0, σ2) is the additive i.i.d. zero-mean Gaussian
noise with variance σ2.

It is noted that, for the single-pass scenario, an ambigu-
ity exists in the emitter position solution on either side of the
satellite subtrack, i.e., one corresponding to the actual emitter
position and the other to its mirror image [13, 14, 17, 18, 20].
Given an estimate of the PCA point and emitter-subtrack dis-
tance, the ambiguity can be resolved by taking into account
the slight difference in the shapes of the two Doppler curves
corresponding to the actual emitter position and its mirror im-
age due to the rotation of the Earth [18–20]. In particular, the
residual sets of the two solutions were shown to have differ-
ent statistical properties and a quadratic-form test aiming to
maximize the probability of a correct decision was proposed
in [18]. In addition, the ambiguity can be resolved by using a
subsequent pass of the satellite [17, 20] if the delay resulting
from this is tolerable.

3. PROPOSED ALGEBRAIC SOLUTION

The proposed algebraic solution involves two separate steps
of (i) estimating the PCA point x

PCA
and (ii) estimating the

emitter-subtrack distance d with details given below.

3.1. Estimating PCA point

From Fig. 1, we have the following trigonometric relation-
ship:

cosαk =
xPCA − xk

lk
=

x
PCA
− xk√

h2 + d2 + (x
PCA
− xk)2

(2)

where lk denotes the emitter-satellite distance at time in-
stant k. The distance lk can be written in terms of α1 and αk
based on the law of sines [8] (see Fig. 2). Applying the law
of sines to the triangle formed by the emitter position and the
satellite positions at time instants 1 and k as shown in Fig. 2
yields

xk − x1
sin γk1

=
lk

sinα1
. (3)
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Fig. 2. Triangle formed by emitter position and satellite posi-
tions at time instants 1 and k.

As a result, we have

lk =
(xk − x1) sinα1

sin γk1
=

(xk − x1) sinα1

sin(αk − α1)
. (4)

Substituting (4) into (2) gives

x
PCA

=
(xk − x1) sinα1 cosαk

sin(αk − α1)
+ xk. (5)

Replacing the unknown angles α1 and αk in (5) by their esti-
mates α̃1 and α̃k yields

xPCA =
(xk − x1) sin α̃1 cos α̃k

sin(α̃k − α̃1)
+ xk + ηk (6)

where ηk is the resulting pseudolinear noise term. Here the
estimated angle α̃k, k ∈ {1, . . . , N}, is computed from the
Doppler-shifted frequency measurement f̃k in (1) as

α̃k = cos−1

(
c

V

(
f̃k
fo
− 1

))
. (7)

Stacking (6) for k = 2, . . . , N and solving it for xPCA in the
least-squares sense yields an estimate x̂PCA :

x̂
PCA

=
1

N − 1

N∑
k=2

(
(xk − x1) sin α̃1 cos α̃k

sin(α̃k − α̃1)
+ xk

)
. (8)

3.2. Estimating emitter-subtrack distance

Equation (2) can be rewritten as

d2 = (xPCA − xk)2 tan2 αk − h2. (9)

Replacing the unknown αk and x
PCA

with their estimates α̃k
and x̂

PCA
in (7) and (8), respectively, we obtain

d2 = (x̂
PCA
−xk)2 tan2 α̃k−h2+δk, k = 1, . . . , N (10)

where δk is a noise term accounting for the errors introduced
by α̃k and x̂PCA .

Stacking (10) for k = 1, . . . , N and solving the resulting
matrix equation for d2 in the least-squares sense yields:

d̂2 =

(
1

N

N∑
k=1

(x̂
PCA
− xk)2 tan2 α̃k

)
− h2. (11)

An estimate for the emitter-subtrack distance d is simply
given by the positive square-root of d̂2:

d̂ =

√√√√( 1

N

N∑
k=1

(x̂
PCA
− xk)2 tan2 α̃k

)
− h2. (12)

In (12), x̂
PCA

is only an estimate of the actual x
PCA

.
Therefore, the estimation noise in x̂PCA will be greatly ampli-
fied in (12) if the satellite data contains measurements taken at
satellite positions close to the PCA point (where the values of
α̃ is around 90◦) because tan α̃k → ∞ as α̃k → 90◦. Thus,
the estimation accuracy of d̂ will be significantly degraded
unless (10) is properly weighted according to the variance
of δk. To overcome this problem, we introduce a weight
of 1/ tan2 α̃k for each data point k ∈ {1, . . . , N} in (12),

yielding a weighted estimate ˆ̂
d of d:

ˆ̂
d =

√√√√√∑N
k=1

(
1

tan2 α̃k

(
(x̂

PCA
− xk)2 tan2 α̃k − h2

))
∑N
k=1

1
tan2 α̃k

=

√√√√∑N
k=1(x̂PCA

− xk)2∑N
k=1 cot

2 α̃k
− h2. (13)

Equations (8) and (13) make up the proposed closed-form
algebraic solution for the satellite Doppler positioning prob-
lem.

4. SIMULATION STUDIES

In this section we demonstrate the effectiveness of the pro-
posed algebraic solution via a simulation example. In partic-
ular we compare the performance of the iterative maximum-
likelihood (ML) algorithm initialized by the proposed solu-
tion with the CRLB to verify its good performance as an ini-
tialization algorithm. In the simulation, the following prac-
tical parameters are used: h = 850 km, V = 7.6 km/s,
fo = 406 MHz, xPCA = 1500 km, d = 850 km, and c =
3 × 108 m/s. The LEO satellite collects Doppler-shifted fre-
quency measurements 21 times at equally spaced points along
the satellite track segment of 3000 km bounded by 0 km ≤
xk ≤ 3000 km. For simplicity, the implementation of the iter-
ative ML algorithm and the computation of the CRLB are car-
ried out based on the satellite-emitter geometry model given
in Section 2. The ML cost function is given by

JML(ξ) =
1

2
(f̃ − f(ξ))TK−1(f̃ − f(ξ)) (14)
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where ξ = [xPCA , d]
T , f(ξ) = [f1(ξ), . . . , fN (ξ)]T is the

vector of the Doppler-shifted frequencies as a function of ξ,
f̃ = [f̃1, . . . , f̃N ]T is the vector of the corresponding noisy
measurements, and K = σ2I is the noise covariance matrix.
The ML cost function in (14) is minimized via the following
Gauss-Newton (GN) iterations [23]:

ξ̂(j+1)= ξ̂(j)+(JT (j)K−1J(j))−1JT (j)K−1(f̃−f(ξ̂(j)))
(15)

for j = 0, 1, . . . , where J(j) is the Jacobian matrix of f(ξ)
with respect to ξ evaluated at ξ = ξ̂(j):

J(j) =
[
JT1 (j), . . . ,J

T
N (j)

]T
. (16)

Here Jk(j) = [J1,k(j), J2,k(j)] with J1,k(j) and J2,k(j)
given as

J1,k(j) =
V fo

((
d̂(j)

)2
+ h2

)
c
[(
d̂(j)

)2
+ h2 +

(
x̂

PCA
(j)− xk

)2]3/2
J2,k(j) = −

V fod̂(j)
(
x̂PCA(j)− xk

)
c
[(
d̂(j)

)2
+ h2 +

(
x̂PCA(j)− xk

)2]3/2
where x̂

PCA
(j) and d̂(j) are the first and second parameters

of ξ̂(j). The GN iteration in (15) is initialized to the proposed
closed-form solution in (8) and (13), and iterated for 10 times.
Note that the ML algorithm has two optimum solutions due
to the solution ambiguity (refer to Section 2 for a discussion
on how to resolve this ambiguity).

For comparison purposes, the root mean squared errors
(RMSE) of the estimates of xPCA and d, obtained by the pro-
posed algebraic solution and the iterative ML algorithm, are
computed over 100,000 Monte Carlo simulation runs. The
square roots of the CRLBs for x

PCA
and d are also computed.

Here the CRLBs for x
PCA

and d are the first and second di-
agonal terms, respectively, of the CRLB matrix CRLB =(
JToK

−1Jo
)−1

, where Jo has the same expression as J(j)
in (16) but evaluated at the true emitter position.

Figs. 3 and 4 plot the RMSE performance of the proposed
algebraic solution and the iterative ML algorithm for xPCA

and d, respectively, against the frequency measurement noise
standard deviation σ ∈ {1, 2, . . . , 10} Hz. It is observed that
the RMSEs of the proposed solutions for both x

PCA
and d do

not attain their corresponding CRLBs. However, the RMSE
performance of the iterative ML algorithm, which is initial-
ized by the proposed algebraic solution, achieves the CRLB
as shown in Figs. 3 and 4. This observation confirms the ef-
fectiveness of the proposed closed-form solution for initial-
ization purposes.

5. CONCLUSION

This paper has developed a new algebraic solution for single-
pass satellite Doppler positioning based on exploitation of

Fig. 3. RMSE of x
PCA

versus measurement noise standard
deviation for the proposed solution and the ML algorithm.

Fig. 4. RMSE of d versus measurement noise standard devi-
ation for the proposed solution and the ML algorithm.

trigonometric relationships between the PCA point, emitter-
subtrack distance and Doppler measurements collected by a
LEO satellite in a rectilinear motion model. The algebraic
solution is derived from linearization of nonlinear Doppler
equations in the unknown PCA point and emitter-subtrack
distance. The proposed algorithm is computationally inex-
pensive compared to other existing PCA-based estimation
techniques requiring expensive nonlinear curve fitting proce-
dures. Its ability to seed iterative ML estimator to achieve
almost efficient performance was demonstrated via numerical
simulations. Due to space limitation, the numerical com-
parison between the proposed algorithm with other existing
PCA-based initialization techniques was not included and
will be considered in future work.
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