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ABSTRACT

Cell depolarization runs essentially in a uniform motion
along the muscular tissue, which creates transient electrical
potential differences measurable by nearby electrodes. In-
ferring the depolarization speed and direction from measure-
ments is of great interest for physicians. In cardiology, this is
part of the inverse ECG problem which often requires a large
number of electrodes and intense computational power even
if the simple common model of the single equivalent moving
dipole (SEMD) is applied. In this paper, we model a depo-
larization process as a straight-line movement of a SEMD.
We provide an efficient algorithm based on linear state space
models that infers the SEMD movement using only 3 mea-
surement channels from a tetrahedral electrode and with the
presence of interferences. Our algorithm is tested both on
simulated and experimental data.

Index Terms— depolarization, linear state space models,
electric dipole, tetrahedral electrode

1. INTRODUCTION

Depolarization of cells is a common phenomenon observed
in biology for transmitting stimuli. While propagating in-
formation along neurons and contractile cells, such depolar-
ization creates transient electrical potential differences mea-
surable by nearby electrodes, as observed in the electrocar-
diogram (ECG) resulting from depolarization of heart muscle
cells. Given those measurements we want to infer the speed
and direction of the depolarization process. This knowledge
can be exploited by physicians for medical diagnosis.

In the context of cardiology, this task is referred as the in-
verse ECG problem [1,2] that aims to retrieve the myocardial
polarization from electrode measurements. Usually a con-
siderable number of surface electrodes and a prior anatomic
geometry model collected by a magnetic resonance imaging
(MRI) or computer tomography (CT) scan are presumed [3].
But still, the time-wise inversion of the electromagnetic equa-
tions is ill-posed. Therefore, different cardiac charge mod-
els with proper regularization [4] have been applied such as
the simple and often used single equivalent moving dipole

(SEMD) model [5, 6] that reduces the cardiac charge distri-
bution to a single electric dipole. Nonetheless inverting the
SEMD equations [4] is still computationally intense.

To avoid heavy computations, we can exploit and track
the SEMD trajectory. Thus, Bayesian filtering methods such
as an Extended or Unscented Kalman filter can be envisaged
as in [7, 8] where a magnetic dipole is tracked with magnetic
field measurements. However, setting the parameters such as
initial states and noise variances is burdensome. Furthermore,
such methods are unable to detect whether a moving dipole is
actually present or not. Similarly, sampling-based methods
(e.g., sequential Monte Carlo techniques [9]) can be consid-
ered but in addition require substantial computational power.

In this paper, we use the SEMD model but our approach
differs in two ways. First, we use a sensor equipped with a
tetrahedral electrode resulting in 3 channels only. This tiny
sensor profile opens opportunities for invasive (e.g., intracar-
diac) or semi-invasive (e.g., in the esophagus) measurements
but outputs a low SNR due to small electrode distances. Sec-
ondly, we restrict the SEMD model to a uniform straight-line
movement with constant dipole moment. Despite those con-
straints, we provide a robust and efficient algorithm for de-
tecting and inferring the movement of a SEMD. In addition
to its ability to run in real-time, the proposed algorithm copes
with both a low SNR and the presence of interferences (e.g.,
caused by electrode motion artifacts).

After introducing the depolarization model and the multi-
channel electrode in Section 2, this paper describes an algo-
rithm inferring the speed and direction of the depolarization
process. We model the voltage measurements with a bank of
low-order linear state space models (LSSM) in Section 3. Ef-
ficient recursions to compute squared errors and a method for
inferring the dipole movement even with the presence of in-
terferences are provided in Section 4. In Section 5, we present
the results on simulated and experimental data.

2. PHYSICAL MODEL OF CELL DEPOLARIZATION

We model a depolarization process as an electric dipole mov-
ing uniformly on a straight line while keeping the electric
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dipole moment constant and aligned with the direction of
movement. Using a coordinate system of an electrode with
origin O, the position rk of the dipole at time index k ∈ Z is

rk = rdr + kvdv = r(dr + (k/τ)dv) , (1)

where r ∈ R+ is the minimum distance to the origin O
(achieved at k = 0, without loss of generality), dr ∈ R3 is
the unit direction at this minimum distance, v ∈ R+ is the
constant per-sample speed, dv ∈ R3 is the unit direction of
movement, and τ = r

v is the time-scale parameter. It follows
that 〈dr,dv〉 = 0. The electric dipole moment p = pdp
(p ∈ R+ and ‖dp‖ = 1) is such that dp = ±dv .

Let M denote an electrode point, β = ‖−−→OM‖, and
dM =

−−→
OM/‖−−→OM‖. The potential φMk induced by the elec-

tric dipole at M and time index k ∈ Z is

φMk =
1

4πε

〈p, βdM − rk〉
‖βdM − rk‖3

, (2)

where ε is the permittivity of the medium (assumed homo-
geneous). Let N be another electrode point at the same dis-
tance β to O. The quantity measured by the electrode M -N
is φMk − φNk and its 1st-order Taylor expansion in β

r is

φMk − φNk =
pβ

4πεr3

〈dp,dv〉(
1 +

(
k
τ

)2) 5
2

·
〈
dM − dN ,−

3k

τ
dr + (1− 2 (k/τ)

2
)dv

〉
. (3)

Thus, the measured voltage is the projection of a 3D discrete-
time signal into the electrode direction dM − dN . In order to
infer the direction of depolarization in the 3D space, a multi-
channel electrode is required with at least 4 points A, B, C,
and D such that (dA − dD,dB − dD,dC − dD) are lin-
early independent. For simplicity we choose ABC to form
an equilateral triangle and D a summit such that ABCD is a
tetrahedron with AD = BD = CD (cf. patent [10]). Denot-
ing O the circumcenter of ABCD, the electrode points are
at the same distance β to O. Combining the 3 measurement
channels Vk =

[
φAk − φDk φBk − φDk φCk − φDk

]T
, we get

Vk = λSTTFG(k/τ) , (4)

with

G(t) =
1

(1 + t2)
5
2

[
t

1− 2t2

]
(5)

S =
[
dA − dD dB − dD dC − dD

]
∈ R3×3 (6)

T = 〈dp,dv〉
[
dr dv dr × dv

]
∈ O3(R) (7)

FT =

[
−3 0 0
0 1 0

]
, (8)

〈dp,dv〉 = ±1, and λ = pβ
4πεr3 ∈ R+.

The matrix T contains the direction of the dipole move-
ment and S accounts for the electrode geometry. Since the last
row of F is all zero, (Vk)k∈Z is insensitive to a sign change of
the last column of T . Thus, we should know a priori whether
we track a depolarization (i.e., dp = dv) or a repolarization
(i.e., dp = −dv). Alternatively, we could restrict the dipole
movement to a half-space (e.g., dr such that 〈dr,dA〉 ≥ 0).

3. STATE SPACE MODEL

3.1. A LSSM for the Electrical Dipole Potentials

Similarly to [11], each component of G(t) is well approxi-
mated by a 2nd-order linear state space model

Ĝ(t) =

[
Ke−

ω1
r1
|t| sin(ω1t)

e−
ω2
r2
|t| cos(ω2|t|+Φ2)

cos Φ2

]
, (9)

with r1 = 0.64, ω1 = 1.139, K = 1.29, r2 = 1.87, ω2 =
2.72, and Φ2 = 2.65. Actually the 2nd component of G(t) is
much better approximated with two 2nd-order LSSM but for
conciseness we omit it. Using the following quantities

R(ω) =

[
cosω − sinω
sinω cosω

]
(10)

Ap
E = Diag

(
e
ω1
τr1R(

ω1

τ
), e

ω2
τr2R(

ω2

τ
)
)
∈ R4×4 (11)

Af
E = Diag

(
e−

ω1
τr1R(

ω1

τ
), e−

ω2
τr2R(−ω2

τ
)
)
∈ R4×4 (12)

sE =
[
1 0 1 0

]T
(13)

C̃E =

[
0 K 0 0
0 0 1 tan Φ2

]
, (14)

we can generate V̂k with a 4th-order linear state space model

V̂k =

{
λSTTCE(Ap

E)ksE , k ≤ 0

λSTTCE(Af
E)ksE , k > 0

, (15)

where CE = FC̃E. As the state transition matricesAp
E andAf

E
depend on τ , we need one model per time scale.

3.2. A LSSM for the Interference Signals

In medical use, the electrodes often experience disturbances
from external sources such as breathing or body movements,
which create interferences. Since the dipole potentials may
have a wide range of time scales and an overlapping fre-
quency band with the interferences, selecting a pre-processing
filter that does not distort the dipole signals is cumbersome.

Instead we locally model additive interferences with
discrete-time polynomials of degree nI − 1 that have a state
space representation with transition matrix AI ∈ RnI×nI hav-
ing ones in the diagonal and upper-diagonal, an initial state
sI =

[
0 . . . 0 1

]T ∈ RnI , and an observation vector de-
pending on the coefficients of the polynomial. In agreement
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with the LSSM of the dipole signals, we use one two-sided
polynomial for each channel measurement and denote C̃p

I ,
C̃ f

I ∈ R3×nI their observation matrices. Besides, at the meet-
ing point of each two-sided polynomial we impose smooth-
ness constraints such as continuity and differentiability of the
counterpart continuous signals. Such linear constraints can
be expressed as

[
C̃p

I C̃ f
I

]
= CIBI, with BI ∈ Rd×2nI a fixed

matrix whose row vectors span the subspace of constraints
and CI ∈ R3×d containing the coefficients to be estimated.

3.3. A Joint LSSM for the Measured Signals

What is measured by the electrode is thus the sum of the
voltages induced by the moving electric dipole with some lo-
cal polynomial interference. The two LSSM models can be
stacked into a single one of order n = 4 + nI with Ap =
Diag(Ap

E, AI), Af = Diag(Af
E, AI). Cp =

[
λSTTCE C̃p

I

]
,

Cf =
[
λSTTCE C̃ f

I

]
, C =

[
Cp Cf

]
, and s =

[
sTE sTI

]T
.

4. INFERRING DIPOLE MOVEMENTS

Assume we observe noisy measurements ỹ1, . . . , ỹK ∈ R3

and want to detect a moving dipole at time step k, k < K.

4.1. Gaussian Noise Assumption and Localization

Due to the symmetry of the electrodes it seems reasonable to
assume isotropic Gaussian measurement noise of variance σ2

ỹk − CXk
iid∼ N (0, σ2I) , (16)

where Xk denotes the state vector of the LSSM. However, for
simplifying the later optimization of the squared error we use
the approximation S−TS−1 ≈ ηI such that

S−Tỹk − S−TCXk ≈ N (0, σ̃2I) . (17)

As our tetrahedral electrode has an equilateral triangle basis,
SST is a diagonal matrix with two equal elements. Thus, by
using such approximation S−TS−1 ≈ ηI , η being the max-
imum eigenvalue of S−TS−1, we overestimate the noise in
only one of the channel. In the particular case of a trirectan-
gular tetrahedron, (

−−→
DA,

−−→
DB,

−−→
DC) forms an orthogonal basis

and we exactly have SST = ηI . We then define the squared-
error between the pre-multiplied data yk = S−Tỹk and a
similar model as before but with Cp =

[
λTCE C̃p

I

]
and

Cf =
[
λTCE C̃ f

I

]
(by abuse of notation).

In addition, for a real-time and stable implementation of
our algorithm we localize the squared error with an exponen-
tial window of parameter γτ < 1 (depending on τ only):

Jk(C, τ) =

k∑
i=1

γ|i−k|τ ‖yi − CpA
i−k
p s‖2

+

K∑
i=k+1

γ|i−k|τ ‖yi − CfA
i−k
f s‖2. (18)

Not only γτ localizes the cost with a forgetting effect of past
dipole movements but also stabilizes the polynomial fit: the
exponential decay counter-weights the polynomial growth.

4.2. Efficient Computation of the Cost Function

Both terms in (18) can be efficiently computed using for-
ward/backward recursions [11]. The forward recursion is

−→
Wk = γτA

−1
p
−→
Wk−1

(
A−1

p

)T
+ ssT (19)

−→
ξ k = γτA

−1
p
−→
ξ k−1 + syT

k (20)
−→κk = γτ

−→κk−1 + ‖yk‖2 , (21)

and the backward recursion is
←−
Wk = γτ

(
Af
←−
Wk+1A

T
f +Afss

TAT
f

)
(22)

←−
ξ k = γτ

(
Af
←−
ξ k+1 +Afsy

T
k+1

)
(23)

←−κk = γτ
(←−κk+1 + ‖yk+1‖2

)
, (24)

with
−→
W0,
−→
ξ 0, −→κ0,

←−
WK ,

←−
ξK , and←−κK initialized with zeros.

Denoting κk = −→κk +←−κk the cost function is

Jk(C, τ) = κk − 2 Tr
(
Cp
−→
ξ k

)
+ Tr

(
Cp
−→
WkC

T
p

)
−2 Tr

(
Cf
←−
ξ k

)
+ Tr

(
Cf
←−
WkC

T
f

)
, (25)

where Tr(H) =
∑
iHi,i.

4.3. Minimizing the Cost Function

For a fixed time-scale τ , we focus on minimizing Jk. For
conciseness we omit the time index k. We decompose

−→
ξ =[−→

ξ E−→
ξ I

]
,
−→
W =

[ −→
WE

−→
WE,I−→

WT
E,I

−→
WI

]
such that

−→
ξ E ∈ R4×3,

−→
WE ∈

R4×4,
−→
ξ I ∈ RnI×3,

−→
WI ∈ RnI×nI ,

−→
WE,I ∈ R4×nI , and simi-

larly, for the backward quantities. Denoting

ξE = CE(
−→
ξ E +

←−
ξ E) (26)

WE = CE(
−→
WE +

←−
WE)CT

E (27)

ξI = BI

[−→
ξ I←−
ξ I

]
(28)

WI = BI Diag(
−→
WI,
←−
WI)B

T
I (29)

WE,I = CE

[−→
WE,I

←−
WE,I

]
BT

I , (30)

the cost can be written as

J(λ, T, CI) = κ− 2λTr (TξE) + λ2 Tr (WE)

−2 Tr (CIξI) + 2λTr
(
TWE,IC

T
I

)
+ Tr

(
CIWIC

T
I

)
. (31)

Minimizing this cost with respect to CI leads to

ĈI = (ξTI − λTWE,I)W
−1
I (32)

min
CI

J(λ, T, CI) = κ̃− 2λTr(T ξ̃) + λ2 Tr(W̃ ) , (33)
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with κ̃ = κ − Tr
(
ξTI W

−1
I ξI

)
, ξ̃ = (ξE −WE,IW

−1
I ξI), and

W̃ = WE −WE,IW
−1
I WT

E,I. Then, since λ ≥ 0, we have

T̂ = argmax
T∈O3(R)

Tr
(
T ξ̃
)

= V UT , (34)

where V , U ∈ O3(R) are from the SVD decomposition ξ̃ =
UΣV T (cf. [12]). Denoting (T̂ )i the ith column of T̂ , for a
depolarization, we have d̂r = (T̂ )1, d̂v = d̂p = (T̂ )2 and for
a repolarization, d̂r = −(T̂ )1, d̂v = −d̂p = −(T̂ )2.

Finally we have λ̂ = Tr (Σ) /Tr(W̃ ) and

min
λ,T,CI

J(λ, T, CI) = κ̃− ‖ξ̃‖2∗
Tr(W̃ )

, (35)

with ‖H‖∗ the nuclear norm (sum of singular values) of H .

4.4. Detection and Estimation

At time step k for a given time-scale τ , we test whether a
moving dipole is present (λ > 0) or not (λ = 0) using the
following log-likelihood ratio [13]

LLR
(τ)
k = −1

2
ln

(
Jk(λ̂, T̂ , ĈI, τ)

Jk(λ = 0, T = 0, ĈI, τ)

)
(36)

= −1

2
ln

(
1− ‖ξ̃k‖2∗

κ̃k Tr(W̃k)

)
, (37)

where all quantities are defined in Subsection 4.3.
To encompass several time scales, τ is discretized: τ ∈

{τj , j ∈ J ⊂ N}. Each τj has its own LSSM. Finally, if

LLRk = max
j∈J

LLR
(τj)
k (38)

is above a threshold and locally maximum then a moving
dipole is detected and the estimated dipole movement param-
eters can be retrieved using Subsection 4.3.

5. RESULTS

5.1. Performance on Simulated Data

We test our algorithm on simulated data generated using the
dipole equation (2) with additive white Gaussian noise of
variance σ2 = 10−4 V2, a dipole with p

4πε = 70 V · m2 and
a tetrahedral electrode of sampling frequency 960 Hz. We
use three different cases: 1) r = 3 cm, v = 4.1 m/s, 2)
r = 3 cm, v = 5.8 m/s, 3) r = 6 cm, v = 5.8 m/s. For each
case we vary the directions dr and dv to produce 7000 dipole
movements. For the algorithm, τ is uniformly sampled from
3 to 16 with a step size of 1 and a polynomial of degree 2 is
used to model interferences. The simulations are performed
both without and with interference signals consisting of ad-
ditive constants and cosines of different frequencies on each
channel (respectively 4 Hz, 6 Hz, and 8 Hz).

As shown in Table 1, the algorithm demonstrates a good
estimation ability even in the presence of these interference
signals. Note that (d, d̂) denotes the angle between the direc-
tion d and the estimated direction d̂.

Errors |r−r̂|
r (%) (dr, d̂r)

|v−v̂|
v (%) (dv, d̂v)

Case 1 6.0 6.2 6.2◦ 7.7◦ 5.1 6.2 4.8◦ 6.0◦

Case 2 5.1 5.8 6.6◦ 7.4◦ 5.1 5.9 5.3◦ 5.9◦

Case 3 2.8 1.5 5.5◦ 16.4◦ 8.2 19.5 5.5◦ 14.7◦

Table 1. Average errors for 7000 simulated dipole move-
ments with (blue) and without (black) interferences.

5.2. Performance on Experimental Data

We also test our algorithm on experimental data. A sensor
prototype including a tetrahedral electrode (cf. [10]) is placed
inside a pot filled with saline water. The electric dipole con-
sisting of two close-by electrodes charged with 2 V is attached
to a string and pulled by a motor. Figure 1 shows a typical
signal recorded while the dipole is moving and the estimated
signals reconstructed with the LSSM from our algorithm. It
is especially worth noticing the splitting of the approximated
signal in dipole model and polynomial part.

14 16 18 20 22
−30

−20

−10

Time [s]

Vo
lta

ge
[m

V
]

(Vk)1
(Vk)2
(Vk)3

Measured
Estimated
Polynomial

Fig. 1. Recorded signal, model fit and polynomial.

In Figure 2 we investigate the influence of an increase of
the distance r. The black point represents the circumcenter of
the electrodes and the green dashed lines the circle of radius
with correct distance. The change of distance is accurately
captured by our algorithm. The variations of dr are mainly
caused by the experimental setup and not by the algorithm.
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Fig. 2. Experiments with change of distance r
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