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ABSTRACT

Imaging techniques in radio interferometry often face a significant
challenge posed by the large number of antenna signals received,
from which the image information needs to be extracted. Beam-
forming is envisaged to reduce the rate required for transporting data
from groups of antennas to a central site for further processing. We
propose a novel method for image reconstruction based on the it-
erative scanning of a region of interest, combined with randomized
beamforming. A modified approximate message-passing algorithm
is adopted to extract relevant image information from beamformed
signals received at the antenna stations. The method is illustrated by
simulations, with reference to the LOFAR radio interferometer, and
compared with the CLEAN algorithm.

Index Terms— Radio interferometry, AMP algorithm, imaging,
sensor arrays, antenna arrays

1. INTRODUCTION

Modern large-scale radio telescope arrays use antenna sta-
tions with multiple closely placed antennas for imaging the
sky [1, 2]. The Square Kilometre Array (SKA), whose com-
pletion is expected within the next decade, will constitute the
largest and most sensitive radio telescope ever built, consist-
ing of several hundred thousand antennas for a total collection
area of 1 km2. The challenge posed by the sheer amount of
data collected, on the order of several tens of Terabits per sec-
ond, is enormous. To reduce the amount of data to be trans-
ported from the stations to a central site for further processing,
the signals received by the antennas at a station are combined
by beamforming. Typically, conjugate matched beamforming
towards the center of the field of view is applied at all an-
tenna stations. Random beamforming techniques were also
proposed [3]. The beamformed signals from all stations are
correlated to obtain so-called visibilities, which are related to
the samples of the Fourier transform of the sky image [4].
Several deconvolution algorithms were proposed for recon-
structing the sky image based on the inverse Fourier transform
of the entire collection of visibility measurements [5]–[9].
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In imaging applications for radio astronomy, the pixelated
region of interest often entails a large number of elements,
especially in the case of high-resolution images. For exam-
ple, sky images with as many as 108 pixels are required for
specific astronomical investigations [10]. In such cases, the
complexity of implementing image-reconstruction algorithms
becomes very challenging. It is therefore essential to de-
vise methods that combine the efficiency and the convergence
properties of low-complexity algorithms with a substantial re-
duction of the memory and computational requirements for
image reconstruction with a desired resolution.

We propose a novel method for image reconstruction in
sensor array systems, based on the iterative scanning of a
region of interest, combined with randomized beamforming.
The method is applied in the time domain, rather than in the
frequency domain as the state-of-the-art approaches mentioned
above. It is well suited to capture fast transient phenomena,
as it can extract image information from short observation in-
tervals. Scanning is achieved by subdividing the region of
interest into subsets of points on a grid, and extracting infor-
mation about point source intensities from each subset. The
overall image is reconstructed by combining the information
recovered from each subset.

A modified approximate message passing (AMP) algo-
rithm over a factor graph connecting hypothetical source in-
tensity nodes and measurement nodes is used to recover, with
low computational effort, the intensities associated with sources
located at the points of each subset. The steps of randomiza-
tion and pruning are introduced to obtain satisfactory results
in the case of significant deviations from a Gaussian distri-
bution of the matrix elements that relate source and measure-
ment nodes. The AMP algorithm was recently proposed as
an efficient implementation of the sum–product algorithm on
factor graphs [11, 12]. It has the attractive feature of allow-
ing an equivalent formulation as an iterative thresholding al-
gorithm [13], thus providing the reconstruction power of l1
minimization techniques when sparsity of the solution can be
assumed, as is often the case in radio interferometry [14]. The
proposed method can be applied for image reconstruction in
general in systems where no beamforming is applied to re-
cover image information from sensor signals [15]. Here we
focus on imaging for radio astronomy applications.
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2. RADIO INTERFEROMETRY SYSTEM MODEL

Consider a radio interferometer withL antenna stations, where
the i-th station comprises Li antennas with positions given by
p

(i)
j , j = 1, . . . , Li, and one beamforming matrix, see Fig.

1. The antennas receive narrow-band signals centered at the
frequency f0. The signal received at the i-th antenna station
at time k from a source sq in a direction identified by the unit
vector rq,k is expressed as

x
(i)
q,k = a(i) (rq,k) sq , (1)

where a(i)(rq,k) is the Li × 1 antenna array steering vector
for the i-th station and direction rq,k, given by

a(i)(rq,k) =

(
e−j2π〈p

(i)
1
,rq,k〉, . . . , e

−j2π〈p(i)

Li
,rq,k〉

)T
, (2)

where 〈p, r〉 denotes the inner product between the vectors p
and r, and xT is the transpose of x. Assuming there are Q
point sources in the sky, the overall noisy signal received at
the i-th antenna station after beamforming is expressed as

x
(i)
b,k = W(i)Hx

(i)
k = W(i)H

(
A

(i)
k sq + η

(i)
k

)
, (3)

where the complex vector sq denotes the signals emitted by
the sources; matrix A

(i)
k is formed by the column vectors

a(i)(rq,k), q = 1, . . . , Q; η(i)
k denotes the noise vector at the

i-th antenna station, and W(i)H is the conjugate transpose
of the beamforming matrix W(i). The expected value of the
correlator output that uses the beamformed signals from the
L stations to produce the visibilities for image reconstruction
is given by

Rk =

 R
(1,1)
k R

(1,2)
k · · ·

...
. . .

...
R

(L,1)
k · · · R

(L,L)
k

 , (4)

where

R
(i,j)
k = Wi(H)

(
A

(i)
k ΣsA

(j)H
k + Σ(i,j)

η

)
W(j) , (5)

and where, assuming independent Gaussian sources and inde-
pendent Gaussian antenna noise signals, the correlation ma-
trix of the signals emitted by the sources Σs is a diagonal
matrix, and the correlation matrix of the noise signals Σ(i,j)

η

is a nonzero diagonal matrix for i = j, and a zero Li × Lj
matrix otherwise.

Observing (5), it turns out that each element in R
(i,j)
k can

be expressed as a linear combination of the source intensi-
ties σ2

q found in the diagonal of Σs, plus measurement noise.
In practice, an estimate of Rk is obtained from a finite num-
ber of samples. Therefore an additional disturbance needs to
be taken into account that arises from the deviation from the
ideal values of the correlation matrix estimates of both the
source intensities Σ̂s and the antenna noise signals Σ̂

(i,i)

η .

Fig. 1. Block diagram of a radio interferometer

For image reconstruction, the region of interest is sub-
divided into a collection of hypothetical intensity sources at
arbitrary positions, corresponding to the N points on a 2D
grid. For a single source with unit intensity at the k-th point
in the grid, i.e., σ2

k = 1 and σ2
j = 0 for j 6= k, the signal

received at the correlator output is obtained in the ideal case
by (4) and (5), with Σs = diag(0, . . . , 0, σ2

k = 1, 0, . . . , 0)

and Σ(i,i)
η = 0. The antenna steering vectors forming the

columns of A
(i)
k are computed by considering the N direc-

tion vectors defined by the points in the grid. After the re-
ceived signals for all hypothetical unit sources in the grid
have been determined, and considering the Hermitian sym-
metry of the correlation matrix, the responses obtained are
reshaped to form a matrix Vk, with the number of rows given
by M = M ′L(M ′L + 1)/2, assuming M ′ beamforms are
used at each of the L stations. Recalling that in radio interfer-
ometry the correlation samples, also known as visibilities, are
collected over K short-term integration (STI) intervals and
that the antenna steering vectors may be considered constant
within one STI, but are time varying in general, the observa-
tion model then becomes

ρ1

ρ2

...
ρK

 =


V1

V2

...
VK

 s +


η̃1

η̃2

...
η̃K

 , (6)

where for the k-th STI ρk denotes the vector of correlation
samples; Vk is the matrix of responses of hypothetical point
sources with unit intensity on the assumed grid; η̃k is a vector
of measurement noise terms, and s is the vector of hypotheti-
cal point source intensities.

3. ITERATIVE IMAGE SUBSET SCANNING
METHOD

The proposed imaging method is based on the iterative scan-
ning of a fine grid= defined over the region of interest. At the
j-th iteration, scanning is achieved by subdividing the points
of the grid into subsets, not necessarily uniform or disjoint,
which belong to a set =(j) ⊆ =, and extracting information
about point source intensities in each subset. With reference
to the radio interferometry system model of Sec. 2, the obser-
vation of the hypothetical sources located at the i-th subset of
points on the grid, Ω(i, j) ⊂ =(j), i = 1, . . . , |=(j)|, where
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|=(j)| denotes the cardinality of =(j), is expressed as
ρ1

ρ2

...
ρK

 =


V

(i,j)
1

V
(i,j)
2

...
V

(i,j)
K

 s(i,j) +


η̃
(i,j)
1

η̃
(i,j)
2

...
η̃
(i,j)
K

 , (7)

where the vector s(i,j) denotes the hypothetical point source
intensities in Ω(i, j), and the subsets satisfy the condition⋃

i=1,...,|=(j)|

Ω(i, j) = =(j), ∀j . (8)

For fixed i and j, there is a one-to-one correspondence be-
tween the elements of the vector s(i,j) and the elements of
the set of direction vectors {r(i,j)

n }|Ω(i,j)|
n=1 , defined by the i-

th subset of points on the grid at the j-th iteration. Beam-
forming matrices W(l), l = 1, . . . , L, are applied to match
Ml columns of the antenna steering matrices A

(l,i,j)
k , where

the index l identifies the l-th station. The beamforming ma-
trix W(l) is formed by randomly selecting Ml columns from
the antenna steering matrix, without repetition of the direc-
tion vectors, i.e., by matched beamforming towards randomly
chosen directions within the region of interest [3].

Fig. 2. Block diagram of a fully connected factor graph.

A modified AMP algorithm is applied over the factor graph
of Fig. 2 to estimate the point source intensities in each sub-
set, where the variable nodes are the source intensities and the
function nodes represent the measurements obtained from the
correlation samples over K STI intervals as expressed in (7).
To further reduce memory and computational requirements,
the measurements obtained by one STI interval at a time are
considered for message passing. Let us consider applying the
AMP algorithm to extract information about the hypothetical
source intensities at the points in the i-th subset during the
j-th scanning iteration, Ω(i, j), at the k-th STI interval. The
prior probability of the source intensities at the first STI inter-
val is assumed to have a Bernoulli–Log Normal distribution.
When the AMP algorithm at the k-th STI interval terminates,
the estimates obtained are used to define a new prior with
a Gaussian distribution for the application of the algorithm
within the (k + 1)-th STI interval. The procedure continues
over theK STI intervals, leading to the final estimate of s(i,j).

As shown in [11], the AMP algorithm yields the true pos-
terior means, in the limit M , N → ∞, provided the ratio
M/N is fixed, and assuming the elements of V

(i,j)
k are i.i.d.

Gaussian random variables. In practice, however, the num-
ber of both the source intensity nodes N and the measure-
ments nodes M are finite, and the elements of V

(i,j)
k may

deviate significantly from a Gaussian distribution. Therefore,
the following two modifications of the AMP algorithm are in-
troduced to obviate those limitations:

1. Randomization. The factor graph of Fig. 2 is fully
connected and hence exhibits a large number of short cycles,
leading to a non-negligible estimation error. This effect is
mitigated by a random permutation of the measurement nodes
at the end of each iteration of the AMP algorithm.

2. Pruning. In the applications considered, the condi-
tion M � N is usually satisfied, hence sufficient flow of
information within the factor graph is achieved if some of the
messages passed from the measurement nodes to the source
nodes are pruned. Thereby only a subset of the messages will
be considered for the computation of the estimate of s(i,j),
such that the distribution of the elements of V

(i,j)
k , which

correspond to the allowed connections in the factor graph, is
approximately Gaussian.

The modified AMP algorithm is applied to obtain esti-

mates
{

ŝ
(i,j)
K , . . . , ŝ

(|=(j)|,j)
K

}
at the j-th scanning iteration.

An estimate of the vector ŝ
(j)
K of the intensities of hypothetical

sources located on the points of the entire grid is obtained by
combining the information recovered from each subset. The
detection of sources at points of the grid may be obtained by a
threshold operation on the elements of the vector ŝ

(j)
K . At the

(j + 1)-th iteration, the subsets Ω(i, j + 1) are modified with
respect to the subsets defined at the j-th iteration to achieve
two goals: First, a subset is extended with points correspond-
ing to sources identified in the preceding iteration to reduce
the level of background clutter. Second, one or more sub-
sets may be defined on a finer grid to achieve a better image
resolution in a portion of the region of interest, provided the
location and number of antenna stations allow a higher reso-
lution. After a predefined number J of iterations of the scan-
ning beamforming method has been completed or a desired
accuracy has been achieved in the estimate of the source in-
tensities, the process terminates.

4. PERFORMANCE ANALYSIS

Now we present numerical simulation showing the effective-
ness of our iterative image subset scanning method combined
with randomized beamforming. A radio interferometry sys-
tem with 24 antenna stations having 48 antennas each is con-
sidered. Its geographical distribution corresponds to the lo-
cations of the LOFAR array [1]. In the simulations, a field
of view of 0.02 rad radius is assumed. In it, six point sources
are found, with intensities having a Rayleigh distribution with
variance (π/2)1/2 ∼ 1.25. Correlation of the received an-
tenna signals is performed over 768 samples within an STI
interval of 1 s, which corresponds to K = 1 in (7). To apply
the proposed method, the field of view is subdivided into a
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Fig. 3. (a) Target sky, (b) reconstructed sky after three iterations of the proposed method, and (c) reconstructed sky by the CLEAN algorithm.

collection of hypothetical intensity sources at arbitrary posi-
tions corresponding to uniformly distributed points within a
100× 100 grid.

The scanning of the field of view takes place over 100
subsets, i.e., |=(j)| = 100 for all j. At the first scanning iter-
ation, the subsets are uniformly chosen within the 100× 100
grid, i.e., the points in each subset are uniformly distributed
over a 10× 10 grid, with a minimum distance between points
of 10× the minimum distance between points in the fine grid.
The estimation of the source intensities for the points of each
subset is achieved by 32 iterations of the modified AMP al-
gorithm described in Sec. 3, including the random permuta-
tion of the measurement nodes at the end of each message-
passing iteration. Pruning of selected messages passed from
the measurement nodes to the variable nodes is also adopted
to approximate a Gaussian distribution of the elements of the
matrix V

(i,j)
1 . Thereby a message from a measurement node

to a variable node is pruned if the following condition on the
(m,n)-th element of V

(i,j)
1 is not satisfied:

Re
{
v
(i,j)
1,m,n

}
< 0.1 ∧ Im

{
v
(i,j)
1,m,n

}
> −0.1 . (9)

The approximation achieved by applying the above condition
is illustrated in Figs. 4 and 5, showing the distributions of the
real and imaginary part of all coefficients of V

(1,1)
1 and of

those retained after pruning the graph.

Fig. 4. Distribution of (a) real and (b) imaginary part of V
(1,1)
1 ele-

ments.

Fig. 5. Distribution of the (a) real and (b) imaginary part of V
(1,1)
1

elements retained after pruning the graph for the modified AMP.

Let us consider a reconstructed image obtained after three
scanning iterations. A measure of the image quality after the
j-th iteration is given by the following metric, which repre-
sents a measure of the residual error:

e
(j)
res =

√∑N

n=1
(ŝ

(j)
n − sn)2

N
, (10)

where ŝ(j)
n denotes the estimated intensity at point n in the

fine grid after iteration j. Figure 6 shows the residual error
versus the SNR, defined as 10 log ((π/2)1/2/σ2

η), for the first
three iterations. Threshold detection is applied at the end of
each iteration to identify the strongest sources, with a variable
threshold set at about one half of the highest intensity after the
first iteration and divided by two after each further iteration.
After detection, each subset is augmented by the points corre-
sponding to the detected sources to reduce the clutter. Figure
3(a) shows the target sky and 3(b) the reconstructed image af-
ter three iterations for an SNR of -18 dB. For comparison, Fig.
3(c) shows the image obtained by the CLEAN algorithm [4],
based on the Fourier transform of the same set of visibilities
as used to generate the image in Fig. 3(b).

Fig. 6. Residual error vs. SNR for the sky of Fig. 3(a).

5. CONCLUSION

We presented a new image reconstruction method and intro-
duced the concept of iterative scanning of a region of inter-
est subdivided into subsets combined with randomized beam-
forming, together with a modified AMP algorithm for effi-
cient extraction of relevant image information from signals
received by sensor arrays. Simulation results obtained with
reference to the LOFAR interferometer indicate that the pro-
posed method yields significantly more accurate image recon-
struction for short observation intervals than the CLEAN de-
convolution algorithm.
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