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ABSTRACT

Parametric estimation for the generative social sensing model
proposed in [19, 20] is addressed. First, we provide a detailed
analysis of the estimation performance bounds, in terms of the
Fisher information matrix, with emphasis on the fundamental
scaling laws as the number of network agents and/or the num-
ber of monitored agents’ activities is large. Then, we exam-
ine two viable estimation procedures that can be useful even in
such large dataset applications: the Expectation-Maximization
and the Fisher scoring algorithms, which both achieve the afore-
mentioned performance bounds.

Index Terms— Social sensing, ML, Fisher information.

1. INTRODUCTION

Massive amounts of informations are being collected from
across multiple data networks, for several motivations, includ-
ing: commercial (e.g., advertising and marketing), security
(e.g., detection of suspicious activities) or safety (e.g., occur-
rence of critical phenomena for hazard management) issues.
The network agents’ activity can be summarized in terms of
different kinds of observations. There are “hard” data, such as
binary votes; more structured forms of data, such as preferences
or opinions; and “soft” data, such as environmental parameters
of some phenomenon of interest. Making inference about the
specific attributes characterizing the network agents is a critical
task to perform agents’ profiling in view of the aforementioned
purposes. Two major needs emerge in this inferential setting:
i) designing algorithms able to manage the vast amount of data
arising from the sensing operations, and ii) finding the perfor-
mance limits (estimation accuracy) and scaling laws (with the
number of agents, with the number of activities, . . . ), to judge
the goodness of a given algorithm.

Such fundamental questions have been addressed in the top-
ical literature. A rough, though useful, categorization of the
available results identifies two main research routes. The first
one broadly refers to data dimensionality reduction techniques
based on convex optimization — see, e.g., [12, 16]. Here, the
bulk of data is typically represented by a “big” data matrix [3],
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which encode the agents’ characteristics in some suitable struc-
ture. The inferential task consists of disentangling the compo-
nents representative of different agents’ behaviors, subject to a
data-best-fit constraint.

In contrast, the second research route refers to statistical
methods based on parametric/nonparametric modeling of users’
data distributions. Here, the analyst first builds a statistical
model for the generative mechanism of the agents’ data, and
consequently designs inference algorithms tailored to the cho-
sen statistical model. Such methods include, to mention a few:
graph-based models [17, 21], community detection [6], belief
diffusion analysis in social networks [5], distributed strategies
for multi-agent inference over social networks via diffusion
adaptation [22], and social sensing problems where sensors are
embedded in a social network [1, 19, 20].

Especially relevant to our work is the generative social sens-
ing model proposed in [19,20]: there are n agents, performing t
tasks. During each task, each agent reports a claim among sev-
eral possible claims. There is only one true claim, which is a
latent, i.e., unobserved, variable. In dealing with human agents,
trustworthiness issues arise: conflicting observations about the
same phenomenon might be reported, and it is critical to profile
the agents and ascertain their credibility. We shall start by ex-
ploiting and extending the aforementioned model in order to ac-
commodate more general social data models, as detailed in the
forthcoming section. This article is a focused version of [15].

Notation. Random objects are denoted by uppercase letters,
their realizations by lowercase letters. Boldface fonts are used
for vectors, while boldface and calligraphic fonts for matrices.
The `-th entry of a vector x is denoted by x

`

, the (i, j)-th entry
of a matrix X is denoted by [X]

ij

.

2. MODEL

The activities of n agents are monitored by a network analyst.
The agents focus on a random phenomenon H belonging to
a discrete, finite alphabet H, with probability mass function
(pmf) ⇡

h

. Several instances (tasks) of the phenomenon of in-
terest are observed. During the m-th task, m = 1, . . . , t, the
`-th agent reacts to a particular state of the underlying phe-
nomenon by producing an observation x

`

(m). The response
of the `-th agent is governed not only by the state h, but also
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by some personal agent attribute, represented by a real-valued
parameter ✓

i

lying in an open set ⇥. Given a state h, the con-
ditional probability function of an agent output x, correspond-
ing to an attribute ✓, will be denoted by p

h

(x; ✓). Condition-
ally on the state of nature, the agents’ responses are indepen-
dent. For each task m, data are collected into the n⇥ 1 vectors
x(m) = [x1(m); . . . ;x

n

(m)], which are assumed independent
and identically distributed (i.i.d.). The goal of the network ana-
lyst is estimating the parameter vector ✓ = [✓1; . . . ; ✓n], based
on the available data x(1), . . . ,x(t). The probability function
of the data vector x collected in a single task is accordingly:

p(x;✓) ,
X

h2H

⇡
h

nY

`=1

p
h

(x
`

; ✓
`

), (1)

and the joint probability function of the data is then given by:
p(x(1), . . . ,x(t);✓) , Q

t

m=1 p(x(m);✓). Special attention
should be paid to the situation where the “dimensionality” of the
problem is large, in terms of cardinality of data and/or param-
eter sets. In order to provide the guidelines for managing huge
amounts of information, it is critical to understand how many
data are needed to reach a target performance level, how the es-
timation error scales with the number of observed tasks t, and
how beneficial is increasing the number of agents n. Our novel
contribution is twofold: i) we provide rigorous results about
the best asymptotic (Fisher information) performance and fun-
damental scaling laws with respect to the number of agents and
tasks, and ii) we provide practical solutions to the estimation
problem, which are affordable and deliver the promised best
performance.

3. PERFORMANCE LIMITS

In order to capture the performance limits of the introduced so-
cial sensing model, here we provide a rigorous asymptotic char-
acterization in terms of the Fisher Information Matrix (FIM),
see, e.g., [13]. Let x denote the n ⇥ 1 data vector collected
during a single task. The score vector is:

r ln p(x;✓) =


@ ln p(x;✓)

@✓1
; . . . ;

@ ln p(x;✓)

@✓
n

�
. (2)

The corresponding per-single-task FIM will be denoted by
F(✓), the n⇥ n matrix whose (i, j)-th entry is given by [13]:

[F(✓)]

ij

= E

@ ln p(X;✓)

@✓
i

@ ln p(X;✓)

@✓
j

�
. (3)

Now, since the observation vectors x(m) collected by the net-
work analyst are i.i.d. across different tasks, the overall FIM is
simply tF(✓) [13]. In order to get useful insights, we now fo-
cus on three extreme cases, namely, i) the situation where only
one1 agent is monitored, ii) the performance of a clairvoyant
system that knows the true state of nature H , and iii) the case
where the number of agents n is large.

1Throughout the work, we shall assume that the estimation problem is not
singular (i.e., is identifiable) at a single-agent level [18].

For the case n = 1, we have p(x; ✓) =
P

h2H ⇡
h

p
h

(x; ✓),
so that the (scalar) Fisher information is:

F(✓) = E

2

4
 P

h2H ⇡
h

@ph(X;✓)
@✓P

h2H ⇡
h

p
h

(X; ✓)

!2
3

5 (4)

The clairvoyant FIM will be instead denoted by F?

(✓). Since
the clairvoyant system observes H , we refer to the probability
function of the pair (X, H):

p(x, h;✓) , ⇡
h

nY

`=1

p
h

(x
`

; ✓
`

), (5)

which shows that the problem decouples across the agents, due
to the conditional independence of the observations given H .
Now, for i 6= j we get [F?

(✓)]

ij

= 0, which follows from the
conditional independence of X

i

and X
j

given H and from the
fact that the score vector has zero mean [18]. As to the terms
on the main diagonal, we have [F?

(✓)]

ii

, F?

(✓
i

), where the
scalar function F?

(✓) is defined by:

F?

(✓) ,
X

h2H

⇡
h

E
"✓

@ ln p
h

(X; ✓)

@✓

◆2
�����H = h

#
(6)

which is the average, over the pmf ⇡
h

, of the (scalar) Fisher
informations corresponding to each state of nature.

Finally, we consider the case of a large number of agents.
Let us preliminarily introduce the Kullback-Leibler (KL) diver-
gences [7] between a pair of distinct states of nature h, k:

D
kh

(✓) , E

ln

p
k

(X; ✓)

p
h

(X; ✓)

����H = k

�
. (7)

The following theorem characterizes the behavior of the FIM
for a large number of agents n. The proof is omitted for space
limitations, and is reported elsewhere [15].

THEOREM 1 (many-agents FIM). Let ✓1, ✓2, . . . be an infinite
sequence of values in the set ⇥, and consider the sequence (as
n increases) of estimation problems for the parameter vectors
✓ = [✓1; . . . ; ✓n]. Assume that, for all h 2 H, and ✓ 2 ⇥, one

has
���@ ln ph(x;✓)

@✓

���  s(x; ✓), where s(X; ✓) and s2(X; ✓) have
finite expectation, and that:

lim

n!1

1

n

nX

`=1

D
kh

(✓
`

) =

¯D
kh

> 0, 8h, k 2 H, h 6= k. (8)

Then, for i, j 2 N held fixed, the FIM performance approaches
the clairvoyant system in the following sense:

lim

n!1
[F(✓)]

ii

= [F?

(✓)]

ii

= F?

(✓
i

)

lim

n!1
[F(✓)]

ij

= [F?

(✓)]

ij

= 0 for i 6= j

(9)

(10)

⇤
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REMARK I. For the asymptotic regime considered in Theorem
1, the size n of the parameter vector ✓ goes to infinity. In order
to get meaningful asymptotic results about the estimation of ✓,
we have imposed to the patterns ✓1, ✓2, . . . a certain degree of
asymptotic regularity through condition (8). Thus, it can be use-
ful to describe some physical situations that correspond to such
a condition. One is the extremely “regular” case where ✓

i

= ✓
for all i. Another one is the extremely “irregular” case where
the entries of ✓

i

look like realizations of i.i.d. random variables.

REMARK II. Due to the diagonal structure exhibited in both the
n = 1 and the n � 1 cases, the limiting Mean-Square-Error
(MSE) performance can be captured in a simple way by exam-
ining the two scalar functions F(✓) and F?

(✓). Approximating
the asymptotic (large number of tasks t) MSE of the single com-
ponent ✓

i

as (1/t)[F(✓)

�1
]

ii

, we have [13]:

MSE ⇡ 1

tF(✓1)
, [single agent, see (4)]

MSE ⇡ 1

tF?

(✓
i

)

, [many agents, see (6)]

(11)

(12)

4. ESTIMATOR DESIGN

Our goal is designing a practical estimator that keeps the
promises of limiting-performance analysis. We start by in-
troducing the definition of asymptotic efficiency: an estimator
ˆ

✓(x(1), . . . ,x(t)) is asymptotically efficient if [18]:

p
t
h
ˆ

✓(X(1), . . . ,X(t))� ✓

i
t!1 N

�
0,F(✓)

�1
�

(13)

where denotes convergence in distribution, and N(µ,C) de-
notes a Gaussian distribution with mean µ and covariance ma-
trix C. Under classical regularity conditions, the ML estimator
is asymptotically efficient [18]. In order to evaluate the ML, we
need maximizing the likelihood over an n-dimensional parame-
ter space. Since the dimension of the parameter space is dictated
by the number of agents, in practical applications a brute-force
grid-search over the parameter space is seldom advisable. As al-
ready noted in [19,20], one possibility to produce ML estimates
is to implement the celebrated Expectation-Maximization (EM)
algorithm [8], which naturally fits the latent-variable structure
of the model, and basically amounts to an iterative optimization
algorithm alternating between i) estimation of the underlying
hypothesis given the current (estimated) vector parameter, and
ii) estimation of the vector parameter given the current (esti-
mated) underlying hypothesis.

In this work we exploit the peculiarities of the considered
social sensing model to construct a different estimator based on
the so-called Fisher scoring [18]. Such estimator will exhibit
interesting features, particularly useful for large dataset appli-
cations. We start by observing that the statistics of the data the
i-th agent depend only on the corresponding attribute ✓

i

: there-
fore, the network analyst can estimate the parameter ✓

i

from
the data pertaining to agent i alone, for instance, by using the

single-agent ML estimator:
˜✓(x

i

(1), . . . , x
i

(t)) , argmax

✓i2⇥
p(x

i

(1), . . . , x
i

(t); ✓
i

), (14)

which will achieve the single-agent asymptotic efficiency [18].
Let us examine the good and the bad properties of the above es-
timator. The estimator improves its performance as t increases,
i.e., as more data are collected by the network analyst, and its
asymptotic MSE scales as 1/(tF(✓

i

)), see [18]. However, this
is not necessarily the best that can be done starting from the
whole dataset that aggregates information from all agents. In-
deed, the single-agent estimator does not take advantage of the
joint dependence across agents that is induced by the commonly
monitored phenomenon. Nonetheless, we can leverage the good
asymptotic properties of the single-agent estimate to obtain a
(globally) asymptotically efficient estimator that admits a con-
venient analytical form. This result can be achieved by using
an estimation procedure known as one-step ML, or Fisher scor-
ing method [18]. We have the following result, whose proof is
omitted for space limitations, and is reported elsewhere [15].

THEOREM 2 (proposed estimator). Let ˜✓ be the n⇥ 1 vector
collecting all the single-agent ML estimates, and introduce the
Fisher scoring estimator:

ˆ

✓ =

˜

✓ +

F(

˜

✓)

�1

t

tX

m=1

r ln p(x(m);

˜

✓) (15)

Then, ˆ

✓ is asymptotically efficient. Moreover, in the large-
network scenario, the estimator takes on the simple form:

ˆ✓
i

large n

⇡ ˜✓
i

+

1

tF?

(

˜✓
i

)

tX

m=1

@ ln p(x(m);✓)

@✓
i

����
✓=✓̃

(16)

⇤
We observe from (15) that, once the single-agent estimate has
been obtained, the Fisher scoring estimator does not rely on any
optimization routine. It admits a closed-form representation, ad-
ditive w.r.t. the task index, and requires an n⇥n matrix compu-
tation and inversion, affordable up to network sizes n ⇠ 10

3.
Remarkably, for the scenario of greatest interest where n is
large, the Fisher scoring estimator is cast into the even more ap-
pealing form in (16): here also the complexity of an n⇥n matrix
computation and inversion has totally disappeared. We stress
that n in the order of 10 is typically enough for the clairvoy-
ant approximation to be accurate, as we shall see in the forth-
coming section. Such properties make the proposed estimator
a good candidate even for distributed implementations, which
are desirable in large dataset applications. We conclude that the
additive correction term present in (15) is able to capture auto-
matically the relevant dependence across agents in a compact
and neat way, by simultaneously embodying the latent-variable
detection and ✓-estimation steps. In constrast, for small number
of tasks, the Fisher scoring method is not expected to outper-
form the EM, provided that local maxima are not a concern for
the EM, and that the EM converges toward the ML reasonably
fast.
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Fig. 1. Network of decision makers, example of Sect. 5.1.

5. EXAMPLES

Due to space constraints, we here skip all technical details (re-
ported in [15]), and we prefer to offer a succinct report of some
numerical experiments, aimed at elucidating how the carried
analysis works in two relevant applicative scenarios.

5.1. Network of Decision Makers

Agents are tasked to perform a Gaussian shift-in-mean detec-
tion [14], with signal-to-noise ratio snr, about a binary state of
nature H . The i-th agent compare its test statistic to a cer-
tain threshold ✓

i

. The analyst estimates the decision thresh-
olds, in order to infer the agents’ “way of thinking”, e.g., to
locate low-quality and/or anomalous agents. In Fig. 1, panel
(a), we check Theorem 1: we display the asymptotic estima-
tion error [F(✓)

�1
]11 corresponding to ✓1 (the other entries of ✓

are randomly generated), for estimation problems with increas-
ing dimensions, and for several pairs (✓1, snr). We see that the
performance improves as n increases, and approaches the clair-
voyant system. The error lies between the single-agent and the
many-agents scalar performance figures F(✓) and F?

(✓), which,
therefore, offer a good summary of the overall inference sys-
tem. In panel (b), we check Theorem 2: we display the empir-
ical (Monte Carlo) as well as the theoretical (FIM trace) MSE
performance, of EM, of the simplest Fisher scoring estimator
in (16), and of the single-agent case. All the algorithms reach
the pertinent asymptotic bounds: they are effective in deliver-
ing the best performance reasonably soon. Panel (c) illustrates
how the algorithms reveal the hidden “nature” of the agents.
Hot (red) circles denote a low-credibility, while cold (blue) cir-
cles denote a high-credibility. The red dashed circle surrounds
low-quality agents that are in error more than 20% of times.
We see that our algorithm is effective in unveiling the unreli-
able agents: the analyst viewpoint, arising from the estimated
ˆ

✓, matches well the ground truth.

102 103

10−2

10−1

100

No. of (per agent) tasks t

M
S
E

 

 

Single−agent ML (empirical)
Single−agent ML (theoretical)
Fisher scoring (empirical)
EM algorithm (empirical)
Asymptotic efficiency limit

1 3 5 7 9 11 13 15
10�2

10�1

No. of agents n

A
sy

m
p
to
ti
c
M
S
E

fo
r
θ
1

 

 

Exact FIM evaluation
Many�agents FIM approximation

|H| = 2

|H| = 3

|H| = 5

|H| = 7

|H| = 10

0 20 40 60 80 100
−60

−40

−20

0

20

40

60

No. of tasks

B
ia

se
d 

da
ta

0 20 40 60 80 100
−6

−4

−2

0

2

4

6

No. of tasks

D
eï

bi
as

ed
 d

at
a,

 a
ge

nt
 1

 

 
Ground truth
Estimate

0 20 40 60 80 100
−6

−4

−2

0

2

4

6

No. of tasks

D
eï

bi
as

ed
 d

at
a,

 a
ge

nt
 1

 

 
Ground truth
Estimate

0 20 40 60 80 100
−5

0

5

No. of tasks

D
eï

bi
as

ed
 d

at
a,

 a
ge

nt
 1

 

 
Ground truth
Estimate

0 20 40 60 80 100
−60

−40

−20

0

20

40

60

No. of tasks

Bi
as

ed
 d

at
a

0 20 40 60 80 100
−6

−4

−2

0

2

4

6

No. of tasks

D
eï

bi
as

ed
 d

at
a,

 a
ge

nt
 1

 

 
Ground truth
Estimate

0 20 40 60 80 100
−6

−4

−2

0

2

4

6

No. of tasks

D
eï

bi
as

ed
 d

at
a,

 a
ge

nt
 1

 

 
Ground truth
Estimate

0 20 40 60 80 100
−5

0

5

No. of tasks

D
eï

bi
as

ed
 d

at
a,

 a
ge

nt
 1

 

 
Ground truth
Estimate

(b) 

(c) 

(a) 

Fig. 2. The agent-bias estimation problem, example of Sect. 5.2.

5.2. An Agent-Bias Estimation Problem

In many multi-agents situations a common, time-varying, phe-
nomenon is observed by the suite. Each agent comes loaded
with a systemic error, which represents the biased perspective
of each individual agent. Here, the time-varying phenomenon
is that each agent’s observation is Gaussian coming from one
of a set of variances; and the “bias” is that each agent i is con-
fused by its individual mean ✓

i

(the bias), which is the object of
the estimation task. In Fig. 2, panel (a), we examine the FIM
behavior. For this particular example, it can be shown (details
omitted for space limitations) that the FIM is diagonal, with all
equal entries on the main diagonal, which are further indepen-
dent of ✓. Accordingly, it suffices to focus on the inverse FIM
entry [F(✓)

�1
]11, for a certain parameter vector ✓. We con-

sider a uniform distribution among |H| states, for several values
of |H|. We see that the performance improves as n increases
approaching the clairvoyant system. The performance worsens
as the cardinality of the underlying state of nature increases, ac-
counting for the increased uncertainty about the collected data
increases. In panel (b), we see our estimation algorithms in
operation. The general trends are similar to those made in the
comments to Fig. 1, while here the EM algorithm provides some
advantages for smaller numbers of tasks, a behavior that should
come with no surprise, in the light of the discussion made at
the end of Sect. 4. Finally, in panel (c), we show how the pro-
posed algorithms are useful in performing identification of the
biased agents and subsequent de-biasing. In the leftmost plot of
the panel, we display the output observations x, with a different
color for each agent. The curves show clearly how the different
biases impact on the observations produced by the agents. In
the rightmost plot, we display the observations of agent 1, af-
ter a de-biasing operation based on the estimated value ˆ✓1. We
can appreciate how our algorithm allows an accurate de-biasing
operation.

3324



6. REFERENCES

[1] C. Aggarwal and T. Abdelzaher, “Integrating Sensors
and Social Networks,” Social Network Data Analytics,
Springer, 2011.

[2] B. Baingana, G. Mateos, and G. B. Giannakis, “Proximal-
Gradient Algorithms for Tracking Cascades over Social
Networks,” IEEE J. Sel. Topics Signal Process., vol. 8,
no. 4, pp. 563–575, Aug. 2014.

[3] “Big Data: Theoretical and Algorithmic Foundations,”
IEEE Signal Process. Mag., vol. 31, no. 5, Sep. 2014.

[4] E. Candès, J. Romberg, and T. Tao, “Robust Uncertainty
Principles: Exact Signal Reconstruction From Highly In-
complete Frequency Information,” IEEE Trans. Inf. The-
ory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[5] C. Chamley, A. Scaglione, and Lin Li, “Models for the
Diffusion of Beliefs in Social Networks: An Overview,”
IEEE Signal Process. Mag., vol. 30, no. 3, pp. 16–29, May
2013.

[6] P. Y. Chen and A. O. Hero, “Universal Phase Transi-
tion in Community Detectability Under a Stochastic Block
Model,” Physical Review E 91, 032804, 2015.

[7] T. M. Cover and J. A. Thomas, Elements of Information
Theory, 2nd ed., John Wiley & Sons, 2006.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maxi-
mum Likelihood From Incomplete Data Via the EM Al-
gorithm,” J. Royal Statist. Soc., vol. B39, no. 1, pp. 1–38,
1977.

[9] D. L. Donoho, “Compressed Sensing,” IEEE Trans. Inf.
Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.

[10] Y. C. Eldar and M. Mishali, “Robust Recovery of Signals
From a Structured Union of Subspaces,” IEEE Trans. Inf.
Theory, vol. 55, no. 11, pp. 5302–5316, Nov. 2009.

[11] W. Feller, An Introduction to Probability and Its Applica-
tions, vol. 2, Wiley, NY, 1971.

[12] A. O. Hero and B. Rajaratnam, “Foundational Principles
for Large Scale Inference: Illustrations Through Correla-
tion Mining,” Proc. of the IEEE, in press, 2015. Also avail-
able as arxiv 1505.02475.

[13] S. M. Kay, Fundamentals of Statistical Signal Processing,
Volume I: Estimation Theory. Prentice Hall, 1993.

[14] S. M. Kay, Fundamentals of Statistical Signal Processing,
Volume II: Detection Theory. Prentice Hall, 1998.

[15] S. Marano, V. Matta, and P. Willett, “The Importance
of Being Earnest: Social Sensing With Unknown Agent
Quality,” IEEE Trans. Signal and Inf. Process. Over Netw.,
submitted, Aug. 2015.

[16] M. Mardani, G. Mateos, and G. B. Giannakis, “Subspace
Learning and Imputation for Streaming Big Data Matrices
and Tensors,” IEEE Trans. Signal Process., vol. 63, no. 10,
pp. 2663–2677, May 2015.

[17] B. Oselio, J. Kulezsa, and A. O. Hero, “Multi-Layer Graph
Analysis for Dynamic Social Networks,” IEEE J. Sel. Top-
ics Signal Process., vol. 8, no. 4, pp. 514–523, Aug. 2014.

[18] H. Shao, Mathematical Statistics, 2nd ed., Springer,
2003.

[19] D. Wang, L. Kaplan, and T. Abdelzaher, “Maximum
Likelihood Analysis of Conflicting Observations in Social
Sensing,” ACM Trans. Sensor Networks, vol. 10, no. 2, ar-
ticle 30, pp. 1–27, Jan. 2014.

[20] D. Wang, L. Kaplan, T. Abdelzaher, and C. C. Aggarwal,
“On Credibility Estimation Tradeoffs in Assured Social
Sensing,” IEEE J. Sel. Areas Commun., vol. 31, no. 6, pp.
1026–1037, Jun. 2013.

[21] K. Xu and A. O. Hero, “Dynamic Stochastic Blockmodels
for Time-Evolving Social Networks,” IEEE J. Sel. Topics
Signal Process., vol. 8, no. 4, pp. 552–562, Aug. 2014.

[22] X. Zhao and A. H. Sayed, “Learning over Social Networks
via Diffusion Adaptation,” Proc. Asilomar Conference on
Signals, Systems, and Computers, pp. 709–713, Pacific
Grove, CA, Nov. 2012.

3325


