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ABSTRACT

In this paper, we present an optimization framework for design-
ing precoding (a.k.a. beamforming) signals that are instrumental in
achieving a fair user performance through the networks. The precod-
ing design problem in such scenarios can typically be formulated as
a non-convex max-min fractional quadratic program. Using a pe-
nalized version of the original design problem, we derive a simpli-
fied quadratic reformulation of the problem in terms of the signal
(to be designed). Each iteration of the proposed design framework
consists of a combination of power method-like iterations and the
Gram-Schmidt process, and as a result, enjoys a low computational
cost. Moreover, the suggested approach can handle various types of
signal constraints such as total-power, per-antenna power, unimod-
ularity, or discrete-phase requirements—an advantage which is not
shared by other existing approaches in the literature.

Index Terms— Beamforming, fractional programming, max-
min fairness, non-convex optimization, precoding

1. INTRODUCTION

A widely used proactive interpretation of fairness in wireless net-
works, referred to as the max-min fairness [1–8], is to allocate the
available resources in order to maximize the minimal user perfor-
mance in the network. In such scenarios, a judicious design of the
precoding signals for different users can be viewed as a vital part of
the network configuration.

1.1. Problem Formulation

We consider the precoding problem for a downlink channel, with an
M -antenna transmitter and K single-antenna users. Let hi ∈ CM
denote the channel between the transmit antennas and the ith user.
Also let wi ∈ CM denote the precoding vector corresponding to the
ith user. To form the data stream to the users, any complex symbol
to be transmitted, will be modulated by the precoding vector of the
intended user. The precoding vectors are to be designed in order to
enhance the network performance. In particular, the signal-to-noise-
plus-interference ratio (SINR) of the ith user is given by [9]

SINRi =
wH
i Riwi(∑

j∈[K]\{i}w
H
j Riwj

)
+ σ2

i

, ∀ i ∈ [K], (1)

where Ri = E{hihHi } is the covariance matrix of the ith channel,
σ2
i denotes the variance of the zero-mean additive white Gaussian
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noise (AWGN), and [K] = {1, 2, · · · ,K}. Note that by a specific
reformulation, the SINR metric in (1) can be rewritten as a fractional
quadratic criterion. To see this, define the stacked precoding vector
w ∈ CN (with N = KM ) as

w , vec([w1 w2 · · · wK ]), (2)

and observe that (1) will increase for any increased scaling of w.
As a result, any finite-energy constraint on w while maximizing
{SINRi} will be active, i.e. it will be satisfied with equality. Ac-
cordingly, suppose ‖w‖22 = P , and let

Ai , Ri ⊗ Diag (ei) , ∀ i ∈ [K], (3)

Bi , Ri ⊗ (IK − Diag (ei)) +
σ2
i

P
IN , ∀ i ∈ [K], (4)

where Diag (.) denotes the diagonal matrix formed by the entries of
the vector argument,⊗ stands for the Kronecker product of matrices,
and ei is the the ith standard basis vector in CK . Now, it is not
difficult to verify that

SINRi =
wHAiw

wHBiw
, ∀ i ∈ [K], (5)

in which {Ai} are positive semidefinite (PSD) and {Bi} are posi-
tive definite (PD). Finally, the precoding design problem for maxi-
mizing the minimal user SINR performance can be formulated as

P1 : max.
w

min
i∈[K]

{
wHAiw

wHBiw

}
s. t. w ∈ Ω , (6)

where Ω denotes the feasible set of w determined by the associated
signal constraints. Note that P1 may also be used to formulate the
weighted SINR optimization problems; see [1, 2] for details.

1.2. Contributions of this Work

The above precoding design problem has been studied extensively
in the literature when Ω denotes a total-power or per-antenna power
constraint (see e.g., [1–8] and the references therein). As a result,
different approaches have been proposed to solve the design prob-
lem, including those based on uplink-downlink duality [1], the La-
grangian duality [3] and quasi-convex formulations [8].

In this work, we propose a novel optimization framework (which
we call Grab-n-Pull) that can efficiently tackle P1. Note that the
proposed framework subsumes the traditional total-power or per-
antenna power constraints, while also allowing for intricate signal
constraints such as unimodularity or discrete-phase requirements.

Remark 1: It is worth mentioning that the problem formulation
P1 in (6) is also useful in other applications, including e.g., wave-
form design for radar [10, 11], and relay beamforming [12, 13]. �
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2. THE PROPOSED FRAMEWORK

We begin by considering a reformulated version of P1; namely,

P2 : max.
w

min
i∈[K]

{λi}

s. t. w ∈ Ω , (7)

λi =
wHAiw

wHBiw
, ∀ i ∈ [K]. (8)

Note that (8) holds if and only if ‖A
1
2
i w‖

2
2 = λi‖B

1
2
i w‖

2
2, or equiv-

alently ‖A
1
2
i w‖2 =

√
λi‖B

1
2
i w‖2, where (.)

1
2 denotes the Hermi-

tian square-root of the matrix argument [14]. In particular, the left-
hand side of (8) is close to the right-hand side of (8) if and only if

‖A
1
2
i w‖2 is close to

√
λi‖B

1
2
i w‖2. Therefore, by employing the

auxiliary variables {λi}, one can consider the following optimiza-
tion problem as an alternative to P2 (and P1):

P3 : max.
w,{λi}

min
i∈[K]

{λi} − η
K∑
i=1

(‖A
1
2
i w‖2 −

√
λi‖B

1
2
i w‖2)2

s. t. w ∈ Ω ; λi ≥ 0, ∀ i ∈ [K]; (9)

in which η > 0 determines the weight of the penalty-term added
to the original objective of P2; and where P3 and P2 coincide as
η → +∞. Note that optimizing P3 with respect to (w. r. t.) w may
require rewriting P3 as a quartic objective in w. To circumvent this,
we continue by introducing P4—yet another alternative objective:

P4 : max.
w,{λi},{Qi}

min
i∈[K]

{λi} − η
K∑
i=1

‖A
1
2
i w −

√
λiQiB

1
2
i w‖

2
2

s. t. w ∈ Ω , λi ≥ 0, ∀ i ∈ [K]; (10)

QH
i Qi = IN , ∀ i ∈ [K]. (11)

Towards understanding the equivalence of P3 and P4, observe that
the maximizer Qi of P4 is a unitary rotation matrix that aligns the

vector B
1
2
i w in the same direction as A

1
2
i w, without changing its

`2-norm (i.e. ‖B
1
2
i w‖2). More precisely, at the maximizer Qi of

P4, we have that

QiB
1
2
i w =

(
‖B

1
2
i w‖2

‖A
1
2
i w‖2

)
A

1
2
i w. (12)

In contrast to P3, the optimization problem P4 can be easily
rewritten as a quadratic program (QP) in w; a widely studied type of
program that facilitates the usage of power method-like iterations,
and thus employing different signal constraints Ω—more on this
later. In the following, we propose an efficient iterative optimization
framework based on a separate optimization of the objective of P4

over its three partition of variables at each iteration, viz. w, {Qi},
and {λi}, where the iterations can be started from any arbitrary ini-
tialization.

2.1. Power Method-Like Iterations (Optimization w. r. t. w)

For fixed {Qi} and {λi}, one can optimize P4 w. r. t . w via
minimizing the criterion:

K∑
i=1

‖A
1
2
i w −

√
λiQiB

1
2
i w‖

2
2 = wHRw (13)

where

R =

K∑
i=1

{
(Ai + λiBi)−

√
λi(A

1
2
i QiB

1
2
i + B

1
2
i Q

H
i A

1
2
i )

}
.

Due to the fact that Ω enforces a fixed `2-norm on w (i.e. ‖w‖22 =

P ), by defining the PD matrix R̂ , µI − R (with µ > 0 being
larger than the maximum eigenvalue of R), we have that wHRw =

−wHR̂w + µP in which µP is constant. Consequently, one can
minimize (or decrease monotonically) the criterion in (13) by maxi-
mizing (or increasing monotonically) the objective of the following
optimization problem:

max.
w

wHR̂w (14)

s. t. w ∈ Ω.

Although (14) is NP-hard for a general signal constraint set [15,16],
a monotonically increasing objective of (14) can be obtained using
power method-like iterations developed in [16], and [17]; namely, we
update w iteratively by solving the following nearest-vector prob-
lem at each iteration:

min
w(s+1)

∥∥∥w(s+1) − R̂w(s)
∥∥∥

2
(15)

s. t. w(s+1) ∈ Ω,

where s denotes the internal iteration number, and w(0) is the current
value of w. Note that we can continue updating w until convergence
in the objective of (14), or for a fixed number of steps, say S.

Now, we take a deeper look at various signal constraints Ω typ-
ically used in practice, as well as their associated constrained solu-
tions to (15):

• Total-power constraint: In this case, Ω can be defined as
Ω = {w : ‖w‖22 = P}, where P > 0. Then, the set of
power method-like iterations in (15) boils down to a typical
power method aiming to find the dominant eigenvector of R̂,
however with an additional scaling to attain a power of P .

• Per-antenna power constraint: We considerM antennas with
assigned power values {Pi}, and assume that K = N/M
entries of w are devoted to each antenna. As a result, we
can solve (15) by considering the nearest-vector problem
for sub-vectors associated with each antenna separately—
i.e., M nearest-vector problems all with vector arguments of
length K.

• Unimodular signal design: The set of unimodular codes is
defined as Ω =

{
ejϕ : ϕ ∈ [0, 2π)

}N
. The unimodular so-

lution to (15) is simply given by (P = N ):

w(s+1) = exp
(
j arg

(
R̂w(s)

))
. (16)

• Discrete-phase signal design: We define the set of discrete-

phase signals as, Ω =
{
e
j 2π
Q
q

: q = 0, 1, · · · , Q− 1
}N

where Q denotes the phase quantization level. The discrete-
phase solution to (15) is given by (P = N ):

w(s+1) = exp
(
jµQ

(
arg
(
R̂w(s)

)))
(17)

where µQ(.) yields (for each entry of the vector argument)
the closest element in the Q-ary alphabet.

Finally, we refer the interested reader to find more details on the
properties of power method-like iterations in [16]- [18].
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2.2. Rotation-Aided Fitting (Optimization w. r. t. {Qi})

Suppose w and {λi} are fixed. As discussed earlier, the maximizer

Qi of P4 is a rotation matrix that maps B
1
2
i w in the same direction

as A
1
2
i w. Let {

ui = A
1
2
i w / ‖A

1
2
i w‖2,

vi = B
1
2
i w / ‖B

1
2
i w‖2,

(18)

and note that (12) can be rewritten as ui = Qivi for all i ∈ [K].
We define the unitary matrices Qui

and Qvi
in CN×N as

Qui
= [ûi1, ûi2, . . . , ûiN ] (19)

Qvi
= [v̂i1, v̂i2, . . . , v̂iN ] (20)

where each of the sets {ûij}j and {v̂ij}j , j ∈ [N ], builds an or-
thonormal basis for CN , and ûi1 = ui, v̂i1 = vi. Based on the
above definitions, the following lemma constructs the optimal Qi

(the proof of Lemma 1 is straightforward and omitted herein):

Lemma 1. The maximizer {Qi} of P4 can be found as Qi =
Qui

QH
vi

for all i ∈ [K].

Remark 2: Note that {Qui
} and {Qvi

} can be obtained via the
Gram-Schmidt process, and are not generally unique since {ûij}
and {v̂ij} can be chosen rather arbitrarily for j 6= 1. This further
implies that the maximizer {Qi} of P4 is also not unique, which is
in agreement with the common understanding that rotation matrices
are not necessarily unique when the dimension grows large. �

2.3. Grab-n-Pull (Optimization w. r. t. {λi})

Note that, once the optimal {Qi} is used, the objectives of P3 and
P4 can be considered interchangeably. We assume that the optimal
w and {Qi} are obtained according to the above discussions, and
are fixed. Therefore, to find {λi}, we can equivalently focus on
obtaining the maximizer {λi} of P3 via the optimization problem:

Λ : max.
{λi}

min
i∈[K]

{λi} − η
K∑
i=1

(‖A
1
2
i w‖2 −

√
λi‖B

1
2
i w‖2)2

s. t. λi ≥ 0, ∀ i ∈ [K]. (21)

Definition 1. Let {λ?i } denote the optimal {λi} of Λ, and λ? ,
mini∈[K] {λ?i }. We let Υ to denote the set of all indicesm for which
λ?m takes the minimal value among all {λ?i }, i.e.

Υ = {m ∈ [K] : λ?m = λ?} . (22)

Moreover, we refer to γ2
i , ‖A

1
2
i w‖

2
2 / ‖B

1
2
i w‖

2
2 as the shadow

value of λ?i , for all i ∈ [K].

It is straightforward to verify from the objective of Λ that if λ?i >
λ?, then λ?i = γ2

i . On the other hand, to obtain λ?, we need to
maximize the criterion:

f(λ) = λ− η
∑
k∈Υ

(
‖A

1
2
k w‖2 −

√
λ ‖B

1
2
k w‖2

)2

. (23)

Provided that η is large enough (see the lower bound in Theorem 1),
the optimal λ? of the above quadratic criterion (in

√
λ) is given by

√
λ? =

η
∑
k∈Υ αkβk

η
∑
k∈Υ β

2
k − 1

(24)

in which αk , ‖A
1
2
k w‖2, and βk , ‖B

1
2
k w‖2. It is interesting to

have some insight into what
√
λ? represents: Note that (24) can be

rewritten as

√
λ? =

∑
k∈Υ γkβ

2
k∑

k∈Υ β
2
k − 1/η

. (25)

As a result,
√
λ? can be viewed as a weighted average of γk for

k ∈ Υ—except that the term−1/η in the denominator of (25) makes√
λ? a bit larger than the actual weighted average. However, for

an increasing η,
√
λ? converges to the exact value of the weighted

average specified above.

Hereafter, we propose a recursive Grab-n-Pull procedure to fully
determine Υ, while we can obtain

√
λ? via (24). The proposed ap-

proach will make use of the following observation:

Lemma 2. If γ2
i < λ? for any i ∈ [K], then i ∈ Υ.

Proof. The inequality γ2
i < λ? implies that λ?i 6= γ2

i . Considering
the discussion above (23), one can conclude that λ?i ≤ λ?, which
due to the definition of λ? yields λ?i = λ?. Hence, the proof is
complete.

Without loss of generality, and for the sake of simplicity, we
assume in the sequel that the matrix pairs {(Ai,Bi)} are sorted in
such a way to form the ascending order:

0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γK . (26)

Based on the above ordering, the Grab-n-Pull approach is described
in Table 1. Moreover, an illustration of the method is depicted in
Fig. 1. The name of the method, i.e. Grab-n-Pull, comes from the
intuition that the method grabs and pulls the lowest values of {λi}
to a level which is suitable for optimization of the alternative objec-
tives, while achieving equality, at least for the lowest λis. Due to
the key role of Grab-n-Pull procedure in the proposed optimization
framework, we also use the term Grab-n-Pull when referring to the
general framework. In the following, we present a specific criterion
on η that not only bounds the objective of P4 (and P3), but also
guarantees the convergence of the proposed approach.

Theorem 1. Suppose η is chosen such that

η > ηlb ,
1

P

(
max
i∈[K]

{
σ−1

min(Bk)
})

. (27)

Then, f(λ) is upper bounded (at its maximizer λ?, see (24)) as

f(λ?) ≤
∑
k∈Υ α

2
k∑

k∈Υ β
2
k − 1/η

(28)

≤ σmax

{((∑
k∈Υ

Bk

)
− 1

ηP
I

)−1(∑
k∈Υ

Ak

)}
.

The proof of Theorem 1 is omitted herein due to lack of space.
Nevertheless, to see why the latter result implies the convergence of
our algorithm, one can observe that different steps of the proposed
framework lead to an increasing objective of P4 (and P3). To guar-
antee convergence in terms of the objective value, we only need to
show that the objective is bounded from above—a condition which
will be met by satisfying (27).
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Table 1. Recursive Grab-n-Pull Procedure to Determine Υ

Step 0: Set Υ = ∅.

Step 1: Include 1 in Υ.

Remark: Based on Lemma 2, the primitive index 1 belongs to Υ, as
√
λ?

is always larger than γ1.

Step 2: Given the current index set of minimal variables Υ, obtain
√
λ?

using (24).

Remark: Note that if
√
λ? is smaller than γk for all k ∈ [K]\Υ then

the obtained Υ is optimal, as all λk with k ∈ [K]\Υ have chosen their
values freely to maximize the objective of Λ; as a result, adding other
indices to Υ will lead to a decreased objective of Λ.

Step 3: Let {h} ⊂ [K] denote the indices for which h /∈ Υ. If γh ≤√
λ?, include h in Υ, and goto Step 2; otherwise stop.

Remark: This is a direct consequence of Lemma 2, particularly consid-
ering that

√
λ? is only increasing with growing |Υ|, which corresponds

to adding larger γis to the weighted sum in (25).

3. A NUMERICAL EXAMPLE WITH DISCUSSIONS

In this section, a brief numerical example is provided to investi-
gate the performance of the proposed method (performing the op-
timization w. r. t. to all variables at each iteration). To this end, we
consider a downlink transmitter with M = 4 antennas, as well as
K = 4 single-antenna users. The entries of the channel vectors hi
are drawn from an i.i.d. complex Gaussian distribution with zero-
mean and unit-variance. The Gaussian noise components received
at each user antenna are assumed to have unit variance, i.e. σ2

i = 1
for all i ∈ [K]. We consider a total-power constraint with P = 1,
and stop the optimization iterations whenever the objective increase
becomes bounded by ε = 10−6.

Note that while the shadow values {γ2
i } represent the value of

the fractional quadratic terms in the original objective P1, the auxil-
iary variables {λi} tend to be as close as possible to {γ2

i } depending
on the weight (η) of the penalty-terms in P3 and P4. In Fig. 2, we
present the transition of variables {γ2

i } and {λi} vs. the iteration
number for two different settings of η; namely η = 5 and η = 100.
Although with a larger η one may expect a lower value of the penalty
functions in P3 and P4, a lower η can play a useful role in speeding
up the algorithm. Specifically, one can easily see that if η is large,
the value λ? in (25) will be slightly greater than the weighted aver-
age of {γ2

k}k∈Υ, whereas for smaller values of η, the bounces from
the weighted average are much larger—and the convergence can oc-
cur much quicker. This phenomenon can also be observed in Fig. 2.,
noting that the aforementioned values of η are chosen to accentuate
the trade-off originated from the selection of η.

It should be mentioned that for the special case of the total-
power constraint, all optimal {λi} are shown to be identical [1], i.e.
λi = λ? for all i ∈ [K]. This explains the identical values obtained
by the method in Fig. 2. The results leading to Fig. 2 were obtained
in a few seconds on a standard PC.

4. CONCLUSION

An optimization framework for efficient precoding/beamforming in
fairness-achieving networks was proposed. Thanks to a quadratic re-
formulation of the original problem, the proposed method can han-
dle different signal constraints by employing the power method-like
iterations. Various aspects of the proposed approach were studied.

Fig. 1. An illustration of the Grab-n-Pull procedure. The optimal
values of {λi} are obtained when λ? < γ2

3 , which sets Υ to {1, 2}.
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Fig. 2. Transition of the optimization parameters (distinguished by
colors and line-styles) vs. the iteration number for different weights
(η) of the penalty-term in P3 and P4: (a) η = 5, and (b) η = 100.
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