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Abstract— A well known problem of regularization (diag-
onal loading) of the interference rejection combining (IRC)
and IRC / maximum ratio combining (MRC) switching is
addressed. Different empirical loading factor selection rules
adjusted to specific scenarios have been introduced in the
literature. It is expected that future network will be charac-
terized by variety of scenarios, transmission modes, and re-
ceiver configurations. Empirical IRC regularization may not
be suitable for such networks. In this study we consider the
Expected Likelihood (EL) criterion for estimation/selection
of the interference plus noise covariance matrix and demon-
strate that it gives the diagonal loading selection rules that
are effective in wide range of scenarios and receiver config-
urations.

Keywords— Interference rejection combining, maximum
ratio combining, regularization, diagonal loading, expected
likelihood.

I. Introduction

Interference aware receivers play a pivotal role in future
communications networks, which will be increasingly dense
and interference limited [1]. Interference rejection combin-
ing is a simple example, which is currently standardized,
e.g., in LTE [2]. A very important part of such receivers is
estimation of the interference plus noise covariance matrix,
which is normally performed over some sets of pilot sym-
bols. Direct application of the conventional sample (max-
imum likelihood) matrix estimation for a limited number
of samples may lead to significant performance degrada-
tion depending on the interference scenario. A well known
solution for this problem is a regularization (diagonal load-
ing) of the sample covariance matrix. In scenarios, typ-
ically considered in radar applications, e.g., [3], with the
number of interfering point sources P significantly smaller
than the number of receive antenna elements K and very
high interference-to-noise ratio (INR) , selection of the di-
agonal loading factor is proven to be non-critical. Indeed,
for INR� 1 and P � K, the loading factor δ ≈ (2÷ 3)σ2

n,
where σ2

n is the additive white noise power, yields near-
optimal performance [3]. Yet, in wireless communications,
the number of interference components may approach or
exceed the number of antenna elements and INR may vary
significantly. Under these conditions, the robust (scenario
invariant) selection of the diagonal loading factor may have
a large impact on system performance.

Different empirical loading factor selection rules adjusted
to specific scenarios have been introduced. Particularly,
generalized likelihood ratio (sphericity) test is studied for
scenario classification in [4] and applied to the LTE up-
link in [5]. Selection of the regularization parameter pro-

portional to the variance of the diagonal elements of the
sample covariance matrix is proposed in [6] and used in [2]
for IRC on the LTE downlink. Scene detection depending
on the relative weight of the off-diagonal elements of the
sample covariance matrix is proposed in [7].

The major drawback for most of these scene dependent
and empirical regularization techniques is that the diagonal
loading factor selection rules are adjusted to particular sce-
narios, and usually are not appropriate for other scenarios.
Yet, it is envisaged that future network will be character-
ized by variety of scenarios [8], transmission modes, and
receiver configurations. Empirical, simulation based esti-
mates of the interference plus noise covariance matrix may
not be suitable for such networks.

Ideally, we would like to have a regularization technique
that provides the best performance in any possible sce-
nario. In fact, receiver performance criteria, such as bit
error rate (BER), throughput, etc., are indirectly associ-
ated with the covariance matrix estimation criteria. Par-
ticularly, the maximum likelihood (ML) covariance matrix
estimation criterion does not guarantee the best receiver
performance. Since direct diagonal loading factor selection
based on optimization of receiver performance, for exam-
ple, minimum BER, is not feasible, we may have to consider
interim estimation criteria that could potentially be better
suited to the problem in question. Specifically, in this study
we consider the Expected Likelihood criterion [9] for esti-
mation/selection of the interference plus noise covariance
matrix. The main idea of this approach is based on the fact
that the likelihood ratio (LR) of the actual (a priori un-
known) covariance matrix is described by distribution that
does not depend on this covariance matrix, i.e., it is sce-
nario independent. Therefore, the regularized covariance
matrix estimate is threated as appropriate if its likelihood
ration is within the support of this distribution, i.e., the EL
estimate is “as likely as the actual covariance matrix.” De-
spite having been proven very efficient in radar applications
[10], [11] and in wireless communications for establishing
the performance bounds in asynchronous semi-blind inter-
ference suppression [12], this approach needs thorough in-
vestigation in the problem in study. Specifically, two main
questions have to be addressed. The first question is to
what extend (in terms of scenario parameters) the EL cri-
terion contributes to the optimization of the receiver per-
formance. In other words, how efficient is the regularized
estimate if its likelihood is exactly equal to the LR of the
actual covariance matrix for the given set of the training
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data? It is clear that performance of this impractical di-
agonal loading selection rule, would shed light on the use-
fulness of this criterion. The second questions is how to
select the diagonal loading factor in practical situations.
Specifically, for relatively small sample support, the prob-
ability density function (p.d.f.) of the “expected”, i.e., for
the actual covariance matrix, LR is rather broad, and any
specific selection within the support of this distribution, for
example, median value [9], may have its limits that need
to be explored.

The reminder of the pater is organized as follows. Sec-
tion II describes a problem formulation. Section III formu-
lates the EL-based regularization approach and presents
the investigation of its applicability under typical estima-
tion conditions. Section IV contains the simulation results
in the LTE downlink scenario including comparison with
one empirical solution based on the scene analysis. Section
V concludes the paper.

II. Problem formulation and empirical solution
example

A conventional IRC formulation for a single stream
transmission and K received antenna is as follows [13]:

x = hs+ z, (1)

ŝ = ŵ∗x, (2)

ŵ =
1

ĥ∗R̂−1ĥ
R̂−1ĥ, (3)

R̂ = L−1
L∑

l=1

ẑlẑ
∗
l , (4)

where x, h, and z are the (K × 1) vectors of the received
signal, propagation channel and interference plus noise sig-
nal, s is the desired signal, w is the (K × 1) weight vector,
R is the (K × K) interference plus noise covariance ma-

trix., (·)∗ and (̂·) denote complex conjugate transpose and
estimation operations, L is the number of samples available
for R̂ estimation1.

Particularly, the IRC adopted for the LTE downlink [2] is
normally estimated over one time-frequency resource block
(RB), which is the smallest LTE scheduling element, using
the cell specific reference signals (CRS) leading to ẑl =

xl− ĥlpl, l = 1, . . . L, where pl is the CRS symbol, ĥl is the
channel estimate corresponding to the lth CRS position,
and L is the number of CRSs per RB.

Direct application of the sample covariance matrix (4)
in IRC may lead to performance degradation especially for
a small number of samples L and in noise limited scenar-
ios, where MRC becomes the optimal receiver. The well
known solutions for this problem is a regularization (diag-
onal loading) and, possibly, IRC/MRC switching. This can

1This IRC formulation is applicable for different communication
systems for both uplink and downlink. Our goal in this paper is in-
vestigation of the scenario and estimation parameters impact on selec-
tion of the diagonal loading factor rather than performance analysis
of some particular communication standards.

be achieved by replacing the sample covariance matrix R̂
in (3) with the regularized matrix

R̃ = (1− δ)R̂ + δD̂, (5)

where D̂ is the diagonal regularization matrix, e.g., D̂ =
diag(R̂), 0 < δ ≤ 1 is the regularization parameter with
δ < 1 corresponding to the IRC diagonal loading and δ = 1
corresponding to the IRC/MRC switching.

As it was mentioned in Section I, different metrics have
been proposed for selection of the diagonal loading factor
and the switching point. One example of such an empirical
scene analysis metric from [7] is

γ =

∑
n 6=m |r̂nm|
tr(R̂)

, (6)

where r̂nm is the nmth element of R̂ and tr(A) is the trace
of A. This metric can be used for diagonal loading selection
and switching, for example as follows:

δ =


1 γ ≤ 0.9

0.4 0.9 < γ ≤ 1.25
0.2 1.25 < γ ≤ 1.5
0.1 1.5 < γ ≤ 2
0 γ > 2

, (7)

where the corresponding thresholds are found by means of a
number of simulation trials to get a reasonable performance
illustrated in Section IV in the particular scenario with
K = 4, L = 12, and single interference source.

The problem with such a solution is that it is scenario de-
pendent. Generally, one could repeat simulations in differ-
ent scenarios and, probably, obtain reasonable thresholds.
Future wireless networks will be characterized by variety of
scenarios, transmission modes, and receiver configurations.
Thus, empirical scenario dependent IRC regularization and
IRC/MRC switching solutions may not be suitable for such
networks.

III. Uniform EL-based solution

Let us assume that L independent identical distributed
Gaussian vectors zl are available. Then the likelihood ratio
for some estimate R̃ of the actual covariance matrix R =
E(R̂) is as follows [14]:

LR(R̃) =
det(R̃−1R̂)exp(K)

exp
[
tr(R̃−1R̂)

] ≤ 1, (8)

where R̂ = L−1
∑L

l=1 zlz
∗
l is the sufficient statistics.

Selection R̃ = R̂ gives LR=1 and R̂ is called the ML
estimate of the actual covariance matrix R. The EL ap-
proach is based on two main observations [9]:

• All other then R̂ matrices give LR< 1 including the ac-
tual matrix: LR(R) < 1.
• The LR(R) statistics depend on the dimension of the
problem and number of samples, but it does not depend on
the actual covariance matrix: p.d.f [LR(R)] = f(L,K) 6=
f(R).
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The second observation means that the corresponding
distributions are scenario independent and can be precal-
culated for any sets of estimation parameters K and L,
e.g., using equation (179) in [9] or simple simulations for
any R, e.g., R = I, where I is the unit matrix. This
is illustrated in Fig. 1 for K = 2, 4, 6 in 106 trials with
L = 12 (K × 1) independent Gaussian vectors with unit
variance. The corresponding parameters of these distribu-
tions are summarized in Table 1, where µ denotes median
value, β1, β2 define the distribution concentration interval
with Prob [LR(R) < β1] = Prob [LR(R) > β2] = 5%.

Then, the EL estimate of the covariance matrix can be
found assuming that on average it should have the same
statistical quality as the unknown actual covariance ma-
trix. For the regularized model (5), the EL-based diagonal
loading factor can be found from the following equation:

LR
[
(1− δ)R̂ + δD̂

]
= ν ∈ [β1, β2] . (9)

To illustrate the applicability area of the EL-based di-
agonal loading selection, let us compare the following two
options of ν for the receiver configurations specified in Fig.
1 and Table 1:
• ν =LR(R) assuming the known actual covariance ma-
trix;
• ν = µ(K,L) assuming that the corresponding median
value is selected according to Table 1.

Figs. 2 and 3 present the raw BER simulation results
in the idealized scenario with the known channels, QPSK
signals, fixed number of pilots L = 12, different number of
received antennas K = 2, 4, 6 and variable SNR, SIR (INR)
and number of interference sources assuming the same SIR
for all of them. In addition to the IRC results with the
EL-based regularization, the conventional MRC (δ = 1)
and IRC without regularization (δ = 0) performance is
also plotted. Fig. 2 illustrates the IRC/MRC switching
scenario and Fig. 3 corresponds to the strong interference
limited environment. One can see that:
• In all scenarios, the EL-based solution with ν = µ(K,L)
demonstrates the desirable behavior. Some performance
degradation is observed in the interference limited scenario
in Fig. 3, especially for K = 4, 6 with K − 1 interfer-
ence sources, where the regularization actually should be
switched off (δ ≈ 0).
• In all scenarios, the practical ν = µ(K,L) and idealis-
tic ν =LR(R) targets in (9) give approximately the same
results, including some BER performance degradation in
Fig. 3.

The second observation means that this degradation rep-
resents mismatch between the BER and likelihood criteria
as discussed in Section I, which establishes limits (break-
down) of the EL efficiency in the considered problem.

Further adjustments to the regularization selection could
be made by means of taking into account some additional
a priori information, for example, regarding importance of
some special scenarios. Particularly, if the maximum per-
formance needs to be demonstrated in the (test) pure noise
limited scenario, then hard IRC/MRC switching may be

beneficial. On the contrary, if the highest interference re-
jection capability is required in the strong interference lim-
ited scenarios, then the LR target in (9) could be biased to
the upper bound of the corresponding distribution. Then,
the modified regularization with hard switching rule could
be as follows:

δbias =

 1 LR
(
D̂
)
> β1

δ2 LR
(
D̂
)
≤ β1

, (10)

where δ2 is a root of equation (9) for ν = β2(K,L).

IV. Simulation results

We simulate the simplified synchronous LTE downlink
scenario: 10MHz bandwidth, TM6 transmission mode with
QPSK signal and full band allocation for the serving and
1÷3 interfering cells with the same SIR, VA5 propagation
channels, conventional two-dimensional CRS-based chan-
nel estimation, 1 RB based IRC with L = 12 CRSs per
RB (only the CRSs overlapping with the data symbols are
used for interference plus noise covariance matrix estima-
tion), and K = 2, 4, 6 low correlation received antennas.
Matlab routine “fminbnd” is used to solve equation (9).

The raw BER performance estimated over 100 subframes
for different scenarios and receiver configurations is pre-
sented in Figs. 4 and 5 for the MRC, IRC with no regular-
ization, and EL-regularized IRC: δmedian according to (9)
for ν = µ(K,L) and δbias according to (10). The results
for the regularized IRC based on the scene analysis metric
(6), (7) designed by means of simulations for K = 4 in the
scenario in Fig. 4b, are also shown in all simulations. One
can see that the empirical regularization demonstrates the
appropriate results in Figs. 4b and 5a scenarios, but its per-
formance in other scenarios may be significantly degraded.
The thresholds in (7) might have to be adjusted in other
scenarios to obtain the desired performance, but it needs
more scenario dependent simulations. The EL-based solu-
tion demonstrates the desirable behavior in different sce-
narios without any empirical metrics and thresholds. Some
performance degradation in Fig. 5 for 2 and 3 co-channel
interference (CCI) sources relates to the EL breakdown as
discussed in Section III, which deserves a more detailed
study.

Diagonal loading factor distributions are shown in Fig.
6 in the same scenario as in Fig. 4 for K = 4. One can see
that the biased solution gives higher probability of the hard
IRC/MRC switching (δ = 1) in the noise limited scenarios
and higher probability of lower regularization factor in the
strong interference limited scenario compared to the EL
median case. In our simulations, we practically do not see
any improvement from hard IRC/MRC switching in Fig.
4, but we keep the EL-based hard switching option in (10)
assuming that it may still be useful when the maximum
performance needs to be demonstrated in pure noise limited
situations.

It is worth emphasizing that even if an additional com-
plexity incurred by the EL based regularization may be
a problem for current implementation, especially on the
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downlink, it still could be useful as a benchmark for some
simplified empirical estimators, e.g., those in (6), (7).

V. Conclusions

The Expected Likelihood based rules for selection of the
diagonal loading factor have been introduced and simu-
lated in different scenarios. It has been shown that they
demonstrate a desirable behavior in wide range of scenarios
and receiver configurations, which makes them promising
solutions in interference aware receivers design for future
wireless networks.
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Fig. 1. LR p.d.f. for the actual covariance matrix for L = 12 and
K = 2, 4, 6.

Tabl. 1. Parameters of the LR(R) distributions for
L = 12 and K = 2, 4, 6
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Fig. 2. Raw BER results for the fixed SNR and variable INR in test
environment.
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Fig. 3. Raw BER results for the fixed SIR and variable SNR in test
environment.
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