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ABSTRACT

In this paper we study the hybrid precoding design problem for
a frequency selective massive MIMO channel, e.g., the millimeter
wave (mmWave) massive MIMO channel. In contrast to a tradi-
tional MIMO system, a hybrid analog-digital MIMO scheme is
preferred for massive MIMO systems due to the high cost and
power consumption of the radio frequency (RF) chains. The RF
analog precoding is implemented using only phase shift networks,
which impose constant modulus constraints on the RF precoding
and decoding matrices. Moreover, there is just one common equiv-
alent RF beamforming matrix for all subcarriers. The resulting sum
rate maximization problem is non-convex and, therefore we resort
to suboptimal solutions. Two methods are introduced, namely, the
higher order SVD (HOSVD) based design and the sequential low
rank unimodular approximation based design. The former approach
exploits the truncated HOSVD of the equivalent channel while
the latter approach approximates optimal unconstrained solutions
by low rank unimodular approximations. Simulation results show
that when the mmWave channel model is used, both approaches
outperform the extension of the state of the art compressed sensing
based algorithm to the multi-carrier case.

Index Terms— Massive MIMO, hybrid precoding, mmWave,
higher order SVD, convex optimization.

I. INTRODUCTION

The massive MIMO technique, which uses orders of magnitude
more antennas (e.g., 100 or more), can provide significant MIMO
gains [1]. When combined with millimeter wave (mmWave) tech-
nology, it will not only gain from large chunks of underutilized
spectrum in the mmWave band [2] but will also benefit from a
significantly reduced form factor of the massive MIMO array [3].
Hence, mmWave massive MIMO communication is a potential
technique for future wireless networks [4]. However, if a large
number of RF chains is implemented to steer the massive number
of antenna elements, the involved power consumption and the
hardware cost are too high and therefore are impractical. To
exploit the MIMO multiplexing gain under a reasonable cost, one
promising solution is to deploy hybrid analog precoding schemes,
realized using phase shifters or switches in the RF domain [5], and
digital precoding schemes, implemented in the digital baseband
domain as in conventional MIMO. If analog precoding is achieved
using phase shifters only, the analog precoding matrix should have
only constant modulus entries, which are stringent constraints that
lead to significant challenges for the required signal processing [6].
Several papers have recently studied such hybrid precoding design
problems, including [7], [8], [9], [10]. In [7] a compressed sensing
based hybrid precoding is proposed to approximate the optimal
unconstrained solution of a point-to-point MIMO system and is
further refined in [8]. In [9] a low complexity codebook based
hybrid precoding scheme is introduced for the multi-user mmWave
downlink channel. A multi-user multi-carrier system is studied in

[10]. However, the focus of [10] is on the required number of
RF chains and phase shifters to achieve the performance of pure
digital beamforming. Furthermore, the considered single stream
beamforming solution is not general and cannot simply be used for
the single user case. Hence, this motivates us to develop optimal
hybrid precoding schemes for single user multi-carrier systems.

In this paper we study the hybrid precoder and decoder design
for a single user multi-carrier massive MIMO system to achieve
a MIMO multiplexing gain. The cyclic prefix OFDM (CP-OFDM)
based multi-carrier modulation scheme is used. The RF precoding is
implemented using only phase shifters, i.e., only constant modulus
entries are allowed. Hence, equivalently we get the same phase
shifts for all subcarriers. Due to these two constraints, the resulting
sum rate maximization problem is non-convex and it might be
intractable to find exact solutions. Thus, we resort to suboptimal
solutions. First, if the constant modulus constraints are dropped,
the truncated higher order singular value decomposition (HOSVD)
provides common basis matrices for the subspaces spanned by all
the channels, which are good candidates for the RF matrices. The
optimal digital solutions are then obtained through the truncated
SVD of the effective channels. Finally, under the constant modulus
constraints approximate solutions are provided for the RF precoding
and decoding matrices. Alternatively, without the constant modulus
constraints hybrid precoding and decoding schemes can also be
obtained via a low rank approximation of the optimal unconstrained
solution. Such a low rank approximation is in general not available
given the constant modulus constraints. Nevertheless, we derive a
rank-N approximation of the optimal unconstrained solution by
sequentially computing the best rank-1 unimodular approximations
N times. This is inspired by the fact that we can obtain a local
optimal solution of the best rank-1 unimodular approximation
problem. Simulation results show that when the mmWave channel
model is used, both proposed algorithms outperform the extension
of the sparse precoding solution in [8] to the multi-carrier case.
Moreover, they achieve almost the same multiplexing gain as the
optimal unconstrained solution.

Notation: The operator‖ · ‖F denotes the Frobenius norm. The
concatenation of matrices or tensors along ther-th dimension is
denoted by r (r = 1, 2, 3) [11]. The r-mode product between
a tensor and a matrix is×r [12]. The operation| · | computes the
magnitude of a scalar or the determinant of a matrix,(·)∗ denotes
the complex conjugate operation, and∠(A) computes the phases
of the matrixA element-wise.

II. PROBLEM FORMULATION

We begin with a brief review of the standard point-to-point
MIMO system where a multi-antenna base station (BS) transmits
data to a multi-antenna user equipment (UE). The BS hasMT

transmit antennas withN (RF)
T = MT RF chains. The UE has

MR receive antennas andN (RF)
R = MR RF chains. A CP-OFDM

based multi-carrier modulation technique is applied to combat
the multipath effect. The corresponding FFT size isNFFT. Let
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s[m] ∈ C
Nss represent the transmitted symbol vector on the

m-th subcarrier of the BS (m ∈ {1, · · · , NFFT}), where s[m]
has zero mean andE{s[m]sH[m]} = INss . A digital precoding
matrix F [m] ∈ C

MT×Nss is applied on a per-subcarrier basis,
i.e., the transmitted frequency domain signal matrixXBB =

[F [1]s[1] · · · F [NFFT]s[NFFT]] ∈ C
N

(RF)
T

×NFFT . After-
wards, the precoded signal passes through the IFFT filter and a
CP of lengthNCP symbols is added. Finally, the average transmit
power constraint has to be fulfilled such thatE{‖XBB‖2F} ≤ PT.

We consider a frequency selective quasi-static block fading
channel. Assume thatNCP symbols have the same length as the
maximum excess delay of the channel such that the inter-symbol
interference is avoided. After passing through the channel, first, the
CP is removed from the received signal and by using the FFT filter
the time domain signal is transformed into the frequency domain.
Let H[m] ∈ C

MR×MT and WH[m] ∈ C
NSS×MR denote the

discrete channel transfer function (CTF) and the digital decoding
matrix onm-th subcarrier of the UE, respectively. The estimated
received signal on them-th subcarrier is obtained as

ŝ[m] = W
H[m] (H[m]F [m]s[m] + z[m]) , (1)

wherez[m] is the zero mean circularly symmetric complex Gaus-
sian (ZMCSCG) noise with covariance matrixE{z[m]zH[m]} =
σ2
nIMR for all m.

Assume that perfect channel knowledge is available at both
the BS and the UE. The traditional joint MIMO precoding and
decoding problem is to find matricesF [m] andW [m], ∀m, such
that the achievable rate is maximized subject to the transmit power
constraint at the BS, i.e.,

max
F [m],W [m]∀m

NFFT
∑

m=1

log2

∣

∣

∣
Iss +Rs[m]σ2

n(W
H[m]W [m])−1

∣

∣

∣

s.t. Rs[m] = W
H[m]H[m]F [m] ·

(

W
H[m]H[m]F [m]

)H

NFFT
∑

m=1

‖F [m]‖2F ≤ PT, (2)

This classical problem has a well known solution. The pairs
of precoding and decoding matrices for each sub-carrier are easily
obtained by the decoupled SVDs of each of the MIMO channels.
Consider them-th subcarrier and define the SVD ofH[m] as

H[m] = Us[m]Σs[m]V H
s [m] +Un[m]Σn[m]V H

n [m],

whereUs[m] ∈ C
MR×Nss andVs[m] ∈ C

MT×Nss are the singular
vectors corresponding to the dominantNss singular values. Then
the optimal precoding and decoding matrices are

Wopt[m] = Us[m] Fopt[m] = Vs[m], (3)

To ensure optimality, these digital precoding and decoding matrices
must also be loaded with powers according to the waterfilling
algorithm [13]. For simplicity, hereinafter we will assume high SNR
where uniform power allocation is almost optimal. To summarize
this review, we emphasize that the core property of the solution
is that it is based ondecoupled and unconstrained SVDs for each
subcarrier.

Armed with this understanding, we now turn to the more
challenging hybrid massive MIMO formulation. In contrast to
the classical model, this formulation assumes that the precoding
and decoding are achieved by hybrid analog and digital schemes.
Moreover, the number of RF chains is assumed to be much smaller
than the number of antenna elements, i.e.,MT ≫ N

(RF)
T and

MR ≫ N
(RF)
R . We havemin(N

(RF)
T , N

(RF)
R ) ≥ Nss, where

Nss denotes the number of spatial streams. A CP-OFDM based
technique is again used to combat the multipath effect. A digital

precoding matrixFBB[m] ∈ C
N

(RF)
T

×Nss is applied on a per-
subcarrier basis. Afterwards, the precoded signal passes through
the IFFT filter and a CP of lengthNCP symbols is added, followed

by an RF precoderFRF ∈ C
MT×N

(RF)
T using analog circuitry. We

assume that the RF precoder is implemented using analog phase
shifters. Hence, constant modulus constraints should be fulfilled for
each element ofFRF, i.e., |FRF,j,a| = 1 for all j ∈ {1, · · · ,MT}
and a ∈ {1, · · · , N (RF)

T }. The transmit power constraint is now
expressed asE{‖FRFXBB‖2F} ≤ PT. This practical formulation
leads to two additional constraints on (2)

{FRF,WRF} ∈ F (RF) (4a)
W [m] = WRFWBB [m], F [m] = FRFFBB [m], (4b)

whereF (RF) represents a general set of matrices or vectors with
constant modulus entries. Thus, the hybrid precoding and decoding
matrices are restricted in two challenging manners. First, the RF
matrices are constant modulus matices. Second, the solutions across
different subcarriers are now coupled via their joint RF solution
[10]. The goal of this paper is to provide efficient solutions to
problem (2) subject to the challenging constraints in (4). From a
linear algebra perspective, we seek a joint matrix decomposition of
multiple matrices where a joint basis consists of constant modulus
elements. Our derivations will be based on two competing ap-
proaches: consecutive SVD via truncated HOSVD and concatenated
SVD via sequential rank-1 decompositions.

III. SOLUTION VIA HOSVD

In this section we propose an HOSVD based framework
for hybrid analog-digital precoding. Indeed, the added subcarrier
dimension, naturally suggests a higher order decomposition. Our
method has two steps: First we consider the joint RF optimization
via a truncated HOSVD. Then, we derive the decoupled digital
matrices using standard SVDs over the effective channels on each
subcarrier.

Define the tensor representation of the overall channel as

H = [H[1] 3 · · · 3H[NFFT]] ∈ C
MR×MT×NFFT (5)

The HOSVD ofH is defined as

H = SMR×MT×NFFT ×1 U1 ×2 U2 ×3 U3 (6)

whereU1 ∈ C
MR×MR , U2 ∈ C

MT×MT , andU3 ∈ C
NFFT×NFFT

are unitary matrices. It is worth mentioning that the columns of
U1 and U2 provide an orthonormal basis for the column space
spanned byH1 = [H[1] · · · H[NFFT]] ∈ C

MR×MTNFFT

and H2 =
[

H[1]T · · · H[NFFT]
T
]

∈ C
MT×MRNFFT , re-

spectively. LetU1,t andU2,t contain the firstN (RF)
R andN

(RF)
T

columns ofU1 and U2, respectively. Then we define the rank-
(N (RF)

R , N
(RF)
T , NFFT) truncated HOSVD as

H
trun ≈ S̃

N
(RF)
R

×N
(RF)
T

×NFFT
×1 U1,t ×2 U2,t ×3 U3. (7)

Using (7) the tensor based effective channel is obtained as

H
(eff) = S̃

N
(RF)
R

×N
(RF)
T

×NFFT
×1(W

H
RFU1,t)×2(F

T
RFU2,t)×3U3.

Let us first consider the coupled solution ignoring the constant
modulus constraints. SinceU1 andU2 span a common column and
row space of the column and row spaces of all the channels, it is
reasonable to choose columns ofU1 andU2 as the common RF
matrices. Therefore, with only constraint (4b), the RF matrices are

WRF = U1,t FRF = U
∗

2,t. (8)
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Assuming high SNR, the optimal decoupled digital beamforming
solutions on each subcarrier are given by

WBB[m] = Ũs[m] FBB[m] = Ṽs[m], (9)

whereŨs[m] ∈ C
N

(RF)
R

×Nss and Ṽs[m] ∈ C
N

(RF)
T

×Nss consist of
the dominantNss left and right singular vectors of the effective
channelU1,tH[m]U∗

2,t on them-th subcarrier.

Implementation and complexity: Numerically U1 and U2

can be computed from the eigendecomposition ofH1H
H
1 and

H2H
H
2 . If a cubic order complexity for the eigendecomposition is

used, the truncated HOSVD based algorithm has a complexity of
O(max(M3

T,M
2
TMRNFFT)) and O(max(M3

R,M
2
RMTNFFT))

for the computation of the precoding matrices and the decoding
matrices, respectively.

Motivated by the coupled hybrid solution, we continue and add
the constant modulus constraints in (4a). Unfortunately, these lead
to a difficult non-convex optimization. We do not expect an optimal
solution. Instead, we propose a simple natural heuristic

WRF = ej∠(U1,t),FRF = ej∠(U∗

2,t). (10)

IV. SOLUTION VIA CONCATENATED SVD

In this section we propose an alternative approach based on a
single SVD with concatenated matrices. We begin with the classical
optimal and unconstrained solution in (3) and try to approximate
them within the feasible set defined by (4a) and (4b). As before,
we first drop the constant modulus constraints. In what follows, we
describe the approach with respect to the precoding matrices, and
assume that an identical approach is applied on the decoding side
as well. This leads to the following optimization

min
FRF,F̃BB[m]

∑

m

‖Fopt[m]− FRFF̃BB[m]‖2F (11)

This problem can be solved by a single SVD over concate-
nated matrices in a least squares (LS) sense. DefineF̄opt =
[Fopt[1] · · · Fopt[NFFT]] ∈ C

MT×NssNFFT and F̄BB =
[

F̃BB[1] · · · F̃BB[NFFT]
]

∈ C
N

(RF)
T

×NssNFFT . This yields

min
FRF,F̄BB

‖F̄opt − FRFF̄BB‖2F (12)

Problem (12) is non-convex, yet it has a closed form solution via
a truncated SVD

FRF = Ūs F̄BB = V̄sΣ̄s (13)

whereŪs ∈ C
MT×N

(RF)
T and V̄s ∈ C

NssNFFT×N
(RF)
T contain the

dominantN (RF)
T left and right singular vectors of̄Fopt. The matrix

Σ̄opt,s ∈ C
N

(RF)
T ×N

(RF)
T is a diagonal matrix and its main diagonal

elements are the dominantN (RF)
T singular values ofF̄opt. In

practice, we also need to ensure that the transmit power constraint is
satisfied. Therefore, the finalFBB = [FBB[1] · · · FBB[NFFT]]
is defined as a scaled version ofF̄BB such that‖FRFFBB‖2F = PT.

Using the above intuition, we turn to the constant modulus
constraint in (4a). More precisely, we need to solve

min
FRF,F̄BB

‖F̄opt − FRFF̄BB‖2F, s.t.FRF ∈ F (RF), (14)

in other words, a unimodular low rank approximation. This problem
has a similar structure as its single carrier counterpart in [8]. As a
benchmark, the spatially sparse precoding via orthogonal matching
pursuit (OMP) algorithm in [8] can be extended to the multi-carrier
case. Nevertheless, in the following we propose a novel approach
from a matrix decomposition point of view.

Algorithm 1 Hybrid Precoding via Sequential Low Rank Unimod-
ular Approximation (SeLoRUA)

1: Initialize: setF (1)
res = F̄opt and a tolerance factorǫ.

2: Main step:
3: for n = 1 to N

(RF)
T do

4: set an arbitrary unimodularf (0)
n .

5: repeat

6: f
(p)
n = ej∠(F

(n)
res F

(n)H

res f
(p−1)
n ).

7: until ‖f (p)
n − f

(p−1)
n ‖2 ≤ ǫ

8: return FRF = [FRF|f (p)
n ],

F̄BB = [F̄T
BB|F (n)H

res f
(p)
n /MT]

T

9: update F
(n+1)
res = F

(n)
res − f

(p)
n f

(p)H

n F
(n)
res /MT

10: end for
11: Output: FRF, FBB = F̄BB

√
PT/‖FRFF̄BB‖F.

A first try at (14) suggests to fixFRF and solve forF̄BB in
closed form using the Moore-Penrose pseudo inverse. This leads to
a difficult minimization of a complicated function ofFRF subject
to constant modulus constraints. It does not seem to have a simple
solution. However, it does suggest a different approach based on
deflation, i.e., the procedure of constructing SVD sequentially [14].
Supposing thatFRF and F̄H

BB are vectors (i.e.,N (RF)
T = 1) and

are denoted byf1 andb1, respectively, then this yields

min
f1,b1

‖F̄opt − f1b
H
1 ‖2F, s.t.f1 ∈ F (RF). (15)

Solving for b1 yields

b1 = F̄
H
opt · f1/MT. (16)

Inserting (16) into the objective function of (15), we get

‖F̄opt − f1b
H
1 ‖2F = ‖F̄opt‖2F − f

H
1 F̄optF̄

H
optf1/MT. (17)

This leads to

max
f1

f
H
1 F̄optF̄

H
optf1/MT s.t. f1 ∈ F (RF). (18)

The resulting problem is expressed as

max
f1

{fH
1 Af1}, s.t.f1 ∈ F (RF), (19)

whereA = F̄optF̄
H
opt. Problem (19) is in general non-convex and it

is termed as the unimodular quadratic programming (UQP) problem
in [15]. A local optimal solution to (19) can be obtained by a power
method like iteration, i.e., in thep-th iteration we compute

f
(p)
1 = ej∠(A·f

(p−1)
1 ), (20)

where it is proven in [15] that this power method like iteration
converges to a local optimum of (19).

Thus, we have reduced the vector case (or rank one case) of (14)
to a standard UQP with an efficient power iteration like algorithmic
solution. In the more general case whenFRF andF̄BB are matrices,
we continue by deflation. Specifically, we can achieve a low rank
unimodular approximation of̄Fopt by sequentially computing its
rank-1 unimodular approximationsN (RF)

T times. Letfn ∈ C
MT

and bn ∈ C
NssNFFT denotes then-th column ofFRF and F̄H

BB,
respectively. To obtainfn and bn, we calculate the best rank-1
unimodular approximation of the following matrix

F
(n)
res = F

(n−1)
res − fn−1b

H
n−1 =

(

IMT − fn−1f
H
n−1

MT

)

F
(n−1)
res .
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Finally, our proposed hybrid precoding via sequential low rank uni-
modular approximation (SeLoRUA) is summarized in Algorithm 1.

The computational complexity of the SeLoRUA algorithm is
dominated by the power method like iteration. In each iteration,
two consecutive matrix-vector multiplications are computed, which
accounts for a complexity ofO(MTNssNFFT). The SeLoRUA
algorithm can also be directly applied at the receiver side to
obtain WBB = [WBB[1] · · · WBB[NFFT]] and WRF. Note
that there is no guaranteed orthogonality for the obtained columns
of FRF via the SeLoRUA algorithm. Hence, this sequential rank-
N

(RF)
T unimodular approximation is not equivalent to the best rank-

N
(RF)
T unimodular approximation of̄Fopt in the LS sense. How-

ever, numerical results show that the SeLoRUA algorithm provides
a sufficiently good approximation accuracy for our applications.

V. SIMULATION RESULTS

The proposed algorithms are evaluated using Monte-Carlo
simulations. The maximum allowable powerPT is fixed to unity.
The SNR is thus defined asSNR = 1/(NFFTσ

2
n). We setNFFT =

128. However, for computational simplicity only 8 out of 128
subcarriers are used for data transmission. Other than the proposed
truncated HOSVD based algorithm (denoted as ”HOSVD”) in Sec-
tion III and the sequential low rank unimodular approximation (de-
noted as ”SeLoRUA”) in Section IV, two benchmark algorithms are
compared, i.e., the optimal unconstrained solution in (3) (denoted as
”Optimal Unconstrained”) and the sparse precoding based design in
[8] extended to the multi-carrier scenario (denoted as ”MC-OMP”).
The tolerance factor isǫ = 10−4 when implementing the SeLoRUA
algorithm and we use 7 quantization bits when implementing the
MC-OMP algorithm [8]. All the simulation results are obtained by
averaging over 1000 channel realizations.

The simulated channel is a mmWave channel with a geometric
channel model ofL = 7 scatterers. Each scatterer contributes to a
single propagation path between the BS and the UE. The discrete
CTF of the UE on them-th subcarrier is modeled as [16]

H[m] =
1√
L

L
∑

ℓ=1

αℓaR,ℓ(θR,ℓ)a
H
T,ℓ(θT,ℓ)e

−j2π ℓ·m
NFFT , (21)

whereαℓ is the random complex gain of theℓ-th path, with zero-
mean andE{|αℓ|2} = 1. The variables{θR,ℓ, θT,ℓ} ∈ [0, 2π)
denote the angle of arrival and the angle of departure of theℓ-th
path, respectively. Finally,aR,ℓ(·) andaT,ℓ(·) are the array steering
vectors of the BS and the UEs, respectively. As in [7], a uniform
linear array (ULA) geometry is used at both ends. The inter-element
spacing of the ULA is equal to half of the wavelength.
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Fig. 1 and Fig. 2 compare the performance of the proposed
algorithms without and with the constant modulus constraints,
respectively. Fig. 1 illustrates that under the considered simulation
settings the performance loss due to the coupling in the RF
is negligible especially when the number of spatial streams is
small. As can be seen from Fig. 2, both the truncated HOSVD
based algorithm and the SeLoRUA algorithm suffer from the
additional constant modulus constraints. But they all outperform
the compressed sensing based algorithm. Compared to the optimal
unconstrained solution, they provide almost the same multiplexing
gain. The gap between the optimal unconstrained solution and the
proposed methods reduces asNss decreases.

VI. CONCLUSION

We have studied the hybrid analog-digital precoding design for
maximizing the sum rate of a single user multi-carrier massive
MIMO system. Analog precoding is identical for all subcarriers
and is realized using phase shifters. Thus the resulting optimization
problem is non-convex. We have proposed two efficient algorithms
to solve it. The first algorithm is based on a two-step consecutive
low rank approximation, where in the first step the truncated
HOSVD of the effective channel is used to compute the RF
matrices. In the second step, the optimal digital precoder and
decoder are provided by the truncated SVDs of the equivalent
channels on a per-subcarrier basis. Thereby, there is no residual
inter-stream interference, which makes this design more suitable for
interference sensitive cases. The second algorithm approximates the
optimal unconstrained solution by sequentially computing its best
rank-1 unimodular approximation. The residual interference is non-
zero after using the proposed SeLoRUA algorithm. However, the
resulting approximation accuracy it provides is sufficient for our ap-
plication. Simulation results show that both algorithms outperform
an extension of the state of the art sparse precoding algorithm [8]
to the multi-carrier case and achieve the same multiplexing gain as
the optimal solution.
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